Advances in adversarial attacks and defenses in computer vision: A survey

N Akhtar, A Mian, N Kardan, M Shah - IEEE Access, 2021 - ieeexplore.ieee.org
Deep Learning is the most widely used tool in the contemporary field of computer vision. Its
ability to accurately solve complex problems is employed in vision research to learn deep …

Better diffusion models further improve adversarial training

Z Wang, T Pang, C Du, M Lin… - … on Machine Learning, 2023 - proceedings.mlr.press
It has been recognized that the data generated by the denoising diffusion probabilistic
model (DDPM) improves adversarial training. After two years of rapid development in …

Rethinking semantic segmentation: A prototype view

T Zhou, W Wang, E Konukoglu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Prevalent semantic segmentation solutions, despite their different network designs (FCN
based or attention based) and mask decoding strategies (parametric softmax based or pixel …

[HTML][HTML] Pre-trained models: Past, present and future

X Han, Z Zhang, N Ding, Y Gu, X Liu, Y Huo, J Qiu… - AI Open, 2021 - Elsevier
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved
great success and become a milestone in the field of artificial intelligence (AI). Owing to …

Exploring cross-image pixel contrast for semantic segmentation

W Wang, T Zhou, F Yu, J Dai… - Proceedings of the …, 2021 - openaccess.thecvf.com
Current semantic segmentation methods focus only on mining" local" context, ie,
dependencies between pixels within individual images, by context-aggregation modules …

Robustbench: a standardized adversarial robustness benchmark

F Croce, M Andriushchenko, V Sehwag… - arXiv preprint arXiv …, 2020 - arxiv.org
As a research community, we are still lacking a systematic understanding of the progress on
adversarial robustness which often makes it hard to identify the most promising ideas in …

Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks

F Croce, M Hein - International conference on machine …, 2020 - proceedings.mlr.press
The field of defense strategies against adversarial attacks has significantly grown over the
last years, but progress is hampered as the evaluation of adversarial defenses is often …

On adaptive attacks to adversarial example defenses

F Tramer, N Carlini, W Brendel… - Advances in neural …, 2020 - proceedings.neurips.cc
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to
adversarial examples. We find, however, that typical adaptive evaluations are incomplete …

Visual recognition with deep nearest centroids

W Wang, C Han, T Zhou, D Liu - arXiv preprint arXiv:2209.07383, 2022 - arxiv.org
We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective
network for large-scale visual recognition, by revisiting Nearest Centroids, one of the most …

Minimally distorted adversarial examples with a fast adaptive boundary attack

F Croce, M Hein - International Conference on Machine …, 2020 - proceedings.mlr.press
The evaluation of robustness against adversarial manipulation of neural networks-based
classifiers is mainly tested with empirical attacks as methods for the exact computation, even …