External validation of deep learning algorithms for radiologic diagnosis: a systematic review

AC Yu, B Mohajer, J Eng - Radiology: Artificial Intelligence, 2022 - pubs.rsna.org
Purpose To assess generalizability of published deep learning (DL) algorithms for radiologic
diagnosis. Materials and Methods In this systematic review, the PubMed database was …

Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis

R Aggarwal, V Sounderajah, G Martin, DSW Ting… - NPJ digital …, 2021 - nature.com
Deep learning (DL) has the potential to transform medical diagnostics. However, the
diagnostic accuracy of DL is uncertain. Our aim was to evaluate the diagnostic accuracy of …

International evaluation of an AI system for breast cancer screening

SM McKinney, M Sieniek, V Godbole, J Godwin… - Nature, 2020 - nature.com
Screening mammography aims to identify breast cancer at earlier stages of the disease,
when treatment can be more successful. Despite the existence of screening programmes …

Designing deep learning studies in cancer diagnostics

A Kleppe, OJ Skrede, S De Raedt, K Liestøl… - Nature Reviews …, 2021 - nature.com
The number of publications on deep learning for cancer diagnostics is rapidly increasing,
and systems are frequently claimed to perform comparable with or better than clinicians …

[HTML][HTML] A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta …

X Liu, L Faes, AU Kale, SK Wagner, DJ Fu… - The lancet digital …, 2019 - thelancet.com
Background Deep learning offers considerable promise for medical diagnostics. We aimed
to evaluate the diagnostic accuracy of deep learning algorithms versus health-care …

Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine

F Pesapane, M Codari, F Sardanelli - European radiology experimental, 2018 - Springer
One of the most promising areas of health innovation is the application of artificial
intelligence (AI), primarily in medical imaging. This article provides basic definitions of terms …

Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists

A Rodriguez-Ruiz, K Lång… - JNCI: Journal of the …, 2019 - academic.oup.com
Background Artificial intelligence (AI) systems performing at radiologist-like levels in the
evaluation of digital mammography (DM) would improve breast cancer screening accuracy …

Standalone AI for breast cancer detection at screening digital mammography and digital breast tomosynthesis: a systematic review and meta-analysis

JH Yoon, F Strand, PAT Baltzer, EF Conant, FJ Gilbert… - Radiology, 2023 - pubs.rsna.org
Background There is considerable interest in the potential use of artificial intelligence (AI)
systems in mammographic screening. However, it is essential to critically evaluate the …

[HTML][HTML] Artificial intelligence in retina

U Schmidt-Erfurth, A Sadeghipour, BS Gerendas… - Progress in retinal and …, 2018 - Elsevier
Major advances in diagnostic technologies are offering unprecedented insight into the
condition of the retina and beyond ocular disease. Digital images providing millions of …

Detection of breast cancer with mammography: effect of an artificial intelligence support system

A Rodríguez-Ruiz, E Krupinski, JJ Mordang, K Schilling… - Radiology, 2019 - pubs.rsna.org
Purpose To compare breast cancer detection performance of radiologists reading
mammographic examinations unaided versus supported by an artificial intelligence (AI) …