Direct recovery: A sustainable recycling technology for spent lithium-ion battery

J Wu, M Zheng, T Liu, Y Wang, Y Liu, J Nai… - Energy Storage …, 2023 - Elsevier
The ever-growing amount of lithium (Li)-ion batteries (LIBs) has triggered surging concerns
regarding the supply risk of raw materials for battery manufacturing and environmental …

A review of degradation mechanisms and recent achievements for Ni‐rich cathode‐based Li‐ion batteries

M Jiang, DL Danilov, RA Eichel… - Advanced Energy …, 2021 - Wiley Online Library
The growing demand for sustainable energy storage devices requires rechargeable lithium‐
ion batteries (LIBs) with higher specific capacity and stricter safety standards. Ni‐rich layered …

Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation

H Zhang, H Liu, LFJ Piper, MS Whittingham… - Chemical …, 2022 - ACS Publications
Layered lithium transition metal oxides derived from LiMO2 (M= Co, Ni, Mn, etc.) have been
widely adopted as the cathodes of Li-ion batteries for portable electronics, electric vehicles …

Cobalt‐free cathode materials: families and their prospects

H Zhao, WYA Lam, L Sheng, L Wang… - Advanced Energy …, 2022 - Wiley Online Library
With the rapid growth of global electro‐mobility, the demand for cobalt is rapidly increasing
because it is currently an indispensable component of the cathode materials in lithium‐ion …

Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries

T Liu, L Yu, J Liu, J Lu, X Bi, A Dai, M Li, M Li, Z Hu… - Nature energy, 2021 - nature.com
Current bottlenecks in cobalt (Co) supply have negatively impacted commercial battery
production and inspired the development of cathode materials that are less reliant on Co …

Oxide cathodes: functions, instabilities, self healing, and degradation mitigations

Y Dong, J Li - Chemical Reviews, 2022 - ACS Publications
Recent progress in high-energy-density oxide cathodes for lithium-ion batteries has pushed
the limits of lithium usage and accessible redox couples. It often invokes hybrid anion-and …

Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides

H Wei, L Tang, Z Wang, Y Luo, Z He, C Yan, J Mao… - Materials Today, 2021 - Elsevier
With the development of high energy density battery technology, layered transition metal
oxide cathode materials, particularly Ni-rich layered cathodes of Li-ion batteries are urgently …

Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: Progress and perspectives

W Xu, X Zhao, F Zhan, Q He, H Wang, J Chen… - Energy Storage …, 2022 - Elsevier
Abstract Two-dimensional (2D) Ni-based materials have attracted considerable attention
due to their distinctive properties, including high electro-activity, large specific surface areas …

Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries

J Liu, J Wang, Y Ni, K Zhang, F Cheng, J Chen - Materials Today, 2021 - Elsevier
Ni-rich layered oxides (NRLOs) and Li-rich layered oxides (LRLOs) have been considered
as promising next-generation cathode materials for lithium ion batteries (LIBs) due to their …

Gradient boracic polyanion doping-derived surface lattice modulation of high-voltage Ni-rich layered cathodes for high-energy-density Li-ion batteries

F Li, Z Liu, C Liao, X Xu, M Zhu, J Liu - ACS Energy Letters, 2023 - ACS Publications
The utilization of high-voltage Ni-rich cathodes can cost-effectively push lithium-ion batteries
toward higher energy density but suffers from major challenges with severe structural and …