Multi-view structural twin support vector machine with the consensus and complementarity principles and its safe screening rules

Q Liu, C Chen, T Huang, Y Meng, H Wang - Expert Systems with …, 2025 - Elsevier
Nowadays, numerous multi-view algorithms are proposed to achieve better performance in
classification tasks. In this article, we propose a multi-view structural twin support vector …

The solution path of slope

X Dupuis, P Tardivel - International Conference on Artificial …, 2024 - proceedings.mlr.press
The SLOPE estimator has the particularity of having null components (sparsity) and
components that are equal in absolute value (clustering). The number of clusters depends …

Beyond GAP screening for Lasso by exploiting new dual cutting half-spaces

TL Tran, C Elvira, HP Dang… - 2022 30th European …, 2022 - ieeexplore.ieee.org
In this paper, we propose a novel safe screening test for Lasso. Our procedure is based on a
safe region with a dome geometry and exploits a canonical representation of the set of half …

Region-free Safe Screening Tests for -penalized Convex Problems

C Herzet, C Elvira, HP Dang - 2022 30th european signal …, 2022 - ieeexplore.ieee.org
We address the problem of safe screening for 1-penalized convex regression/classification
problems, ie, the identification of zero coordinates of the solutions. Unlike previous …

Strong screening rules for group-based SLOPE models

F Feser, M Evangelou - arXiv preprint arXiv:2405.15357, 2024 - arxiv.org
Tuning the regularization parameter in penalized regression models is an expensive task,
requiring multiple models to be fit along a path of parameters. Strong screening rules …

Safe subspace screening for the adaptive nuclear norm regularized trace regression

P Shang, L Kong - arXiv preprint arXiv:2404.07459, 2024 - arxiv.org
Matrix form data sets arise in many areas, so there are lots of works about the matrix
regression models. One special model of these models is the adaptive nuclear norm …

Une nouvelle méthode d'accélération pour LASSO par élimination sûre de variables

TL Tran, C Elvira, HP Dang… - … -Conférence sur l' …, 2022 - centralesupelec.hal.science
Nous présentons une nouvelle région de sûreté (safe region) pour la mise en oeuvre de
techniques d'" élimination sûre de variables"(safe screening) pour le problème LASSO. La …

[PDF][PDF] Étude de l'estimateur SLOPE par le prisme du schéma: Propriétés de parcimonie et d'appariement et calcul du chemin des solutions

PJC Tardivel - 2024 - hal.science
Résumé L'estimateur SLOPE (acronyme signifiant≪ Sorted L One Penalized Estimation≫)
est défini comme une solution d'un probleme d'optimisation convexe ou le terme de pénalité …

Quelques contributions dans la conception de “régions sûres” et “tests d'élagages sûrs” en optimisation convexe

T Le Tran - 2023 - theses.hal.science
Convex optimization is common in machine learning, statistics, signal, and image
processing. Solving high-dimensional optimization problems remains challenging due to …

Geometric and Combinatorial Aspects of Statistical Models

T Skalski - 2023 - theses.hal.science
We concern new applications of discrete geometry and combinatorics in modern statistics.
First of them focuses on the use of penalized linear regresion methods. We start our …