Deep learning for time series anomaly detection: A survey

Z Zamanzadeh Darban, GI Webb, S Pan… - ACM Computing …, 2024 - dl.acm.org
Time series anomaly detection is important for a wide range of research fields and
applications, including financial markets, economics, earth sciences, manufacturing, and …

Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines

K Choi, J Yi, C Park, S Yoon - IEEE access, 2021 - ieeexplore.ieee.org
As industries become automated and connectivity technologies advance, a wide range of
systems continues to generate massive amounts of data. Many approaches have been …

Anomaly detection in time series: a comprehensive evaluation

S Schmidl, P Wenig, T Papenbrock - Proceedings of the VLDB …, 2022 - dl.acm.org
Detecting anomalous subsequences in time series data is an important task in areas
ranging from manufacturing processes over finance applications to health care monitoring …

Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges

G Li, JJ Jung - Information Fusion, 2023 - Elsevier
Anomaly detection has recently been applied to various areas, and several techniques
based on deep learning have been proposed for the analysis of multivariate time series. In …

Graph neural network-based anomaly detection in multivariate time series

A Deng, B Hooi - Proceedings of the AAAI conference on artificial …, 2021 - ojs.aaai.org
Given high-dimensional time series data (eg, sensor data), how can we detect anomalous
events, such as system faults and attacks? More challengingly, how can we do this in a way …

Deep learning for time series forecasting: a survey

JF Torres, D Hadjout, A Sebaa, F Martínez-Álvarez… - Big Data, 2021 - liebertpub.com
Time series forecasting has become a very intensive field of research, which is even
increasing in recent years. Deep neural networks have proved to be powerful and are …

[HTML][HTML] Recurrent neural networks: A comprehensive review of architectures, variants, and applications

ID Mienye, TG Swart, G Obaido - Information, 2024 - mdpi.com
Recurrent neural networks (RNNs) have significantly advanced the field of machine learning
(ML) by enabling the effective processing of sequential data. This paper provides a …

Learning graph structures with transformer for multivariate time-series anomaly detection in IoT

Z Chen, D Chen, X Zhang, Z Yuan… - IEEE Internet of Things …, 2021 - ieeexplore.ieee.org
Many real-world Internet of Things (IoT) systems, which include a variety of Internet-
connected sensory devices, produce substantial amounts of multivariate time-series data …

[HTML][HTML] IoT anomaly detection methods and applications: A survey

A Chatterjee, BS Ahmed - Internet of Things, 2022 - Elsevier
Ongoing research on anomaly detection for the Internet of Things (IoT) is a rapidly
expanding field. This growth necessitates an examination of application trends and current …

A review on outlier/anomaly detection in time series data

A Blázquez-García, A Conde, U Mori… - ACM computing surveys …, 2021 - dl.acm.org
Recent advances in technology have brought major breakthroughs in data collection,
enabling a large amount of data to be gathered over time and thus generating time series …