[HTML][HTML] Epileptic seizures detection using deep learning techniques: a review

A Shoeibi, M Khodatars, N Ghassemi, M Jafari… - International journal of …, 2021 - mdpi.com
A variety of screening approaches have been proposed to diagnose epileptic seizures,
using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities …

Artificial intelligence techniques for automated diagnosis of neurological disorders

U Raghavendra, UR Acharya, H Adeli - European neurology, 2020 - karger.com
Background: Authors have been advocating the research ideology that a computer-aided
diagnosis (CAD) system trained using lots of patient data and physiological signals and …

Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals

UR Acharya, SL Oh, Y Hagiwara, JH Tan… - Computers in biology and …, 2018 - Elsevier
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of
epilepsy. The EEG signal contains information about the electrical activity of the brain …

An automated system for epilepsy detection using EEG brain signals based on deep learning approach

I Ullah, M Hussain, H Aboalsamh - Expert Systems with Applications, 2018 - Elsevier
Epilepsy is a life-threatening and challenging neurological disorder, which is affecting a
large number of people all over the world. For its detection, encephalography (EEG) is a …

Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies

A Shoeibi, N Ghassemi, M Khodatars… - … Signal Processing and …, 2022 - Elsevier
Epileptic seizures are one of the most crucial neurological disorders, and their early
diagnosis will help the clinicians to provide accurate treatment for the patients. The …

A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals

A Shoeibi, N Ghassemi, R Alizadehsani… - Expert Systems with …, 2021 - Elsevier
Epilepsy, a brain disease generally associated with seizures, has tremendous effects on
people's quality of life. Diagnosis of epileptic seizures is commonly performed on …

An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods

M Shen, P Wen, B Song, Y Li - Biomedical Signal Processing and Control, 2022 - Elsevier
Epilepsy is one of the most common complex brain disorders which is a chronic non-
communicable disease caused by paroxysmal abnormal super-synchronous electrical …

Machine learning and deep learning approach for medical image analysis: diagnosis to detection

M Rana, M Bhushan - Multimedia Tools and Applications, 2023 - Springer
Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows
tremendous growth in the medical field. Medical images are considered as the actual origin …

A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG) Signal

M Savadkoohi, T Oladunni, L Thompson - Biocybernetics and Biomedical …, 2020 - Elsevier
This study investigates the properties of the brain electrical activity from different recording
regions and physiological states for seizure detection. Neurophysiologists will find the work …

Epilepsy detection by using scalogram based convolutional neural network from EEG signals

Ö Türk, MS Özerdem - Brain sciences, 2019 - mdpi.com
The studies implemented with Electroencephalogram (EEG) signals are progressing very
rapidly and brain computer interfaces (BCI) and disease determinations are carried out at …