Clipping algorithms for solving the nearest point problem over reduced convex hulls

J López, Á Barbero, JR Dorronsoro - Pattern Recognition, 2011 - Elsevier
The nearest point problem (NPP), ie, finding the closest points between two disjoint convex
hulls, has two classical solutions, the Gilbert–Schlesinger–Kozinec (GSK) and Mitchell …

An effective method to determine whether a point is within a convex hull and its generalized convex polyhedron classifier

Q Leng, S Wang, Y Qin, Y Li - Information Sciences, 2019 - Elsevier
A convex polyhedron classifier that encloses the minority class using a combination of
hyperplanes is potentially effective in imbalanced classification. To construct an easy-to-use …

Geometric algorithms to large margin classifier based on affine hulls

X Peng, Y Wang - IEEE Transactions on Neural Networks and …, 2011 - ieeexplore.ieee.org
The geometric framework for binary data classification problems provides an intuitive
foundation for the comprehension and application of geometric optimization algorithms …

[HTML][HTML] МДМ-метод для решения общей квадратичной задачи математической диагностики

ВН Малоземов, НА Соловьева - Вестник Санкт-Петербургского …, 2023 - cyberleninka.ru
Термин математическая диагностика был введен ВФ Демьяновым в начале 2000-х
годов. Простейшая задача математической диагностики заключается в выяснении …

Linear convergence rate for the mdm algorithm for the nearest point problem

J López, JR Dorronsoro - Pattern Recognition, 2015 - Elsevier
In this paper we will prove a linear convergence rate for the extension of the Mitchell, Dem׳
yanov and Malozemov (MDM) algorithm for solving the Nearest Point Problem (NPP). While …

On the MDM Method for Solving the General Quadratic Problem of Mathematical Diagnostics

VN Malozemov, NA Solovyeva - Vestnik St. Petersburg University …, 2023 - Springer
The term “mathematical diagnostics” was introduced by VF Demyanov in the early 2000s.
The simplest problem of mathematical diagnostics is to determine the relative position of …

Analysis and convergence of SMO-like decomposition and geometrical algorithms for support vector machines

JL Lázaro - 2011 - dialnet.unirioja.es
Resumen Support Vector Machines (SVMs) constitute one of the most successful paradigms
in Machine Learning nowadays. Their success stems from the fact that they are relatively …

Geometric algorithms for parametric-margin ν-support vector machine

X Peng, D Xu - Neurocomputing, 2013 - Elsevier
The parametric-margin ν-support vector machine (par-ν-SVM) is a useful classifier in many
cases, especially when the noise is heteroscedastic. In this paper, the geometric …

Convergence of algorithms for solving the Nearest Point Problem in Reduced Convex Hulls

J López, JR Dorronsoro - The 2011 International Joint …, 2011 - ieeexplore.ieee.org
In this paper we establish a framework for the convergence of two algorithms for solving the
Nearest Point Problem in Reduced Convex Hulls (RCH-NPP), namely the RCH-GSK …

Учредители: Санкт-Петербургский государственный университет

ВН МАЛОЗЕМОВ, НА СОЛОВЬЕВА - ВЕСТНИК САНКТ …, 2023 - elibrary.ru
Термин математическая диагностика был введен ВФ Демьяновым в начале 2000-х
годов. Простейшая задача математической диагностики заключается в выяснении …