A review on deep learning in medical image analysis

S Suganyadevi, V Seethalakshmi… - International Journal of …, 2022 - Springer
Ongoing improvements in AI, particularly concerning deep learning techniques, are
assisting to identify, classify, and quantify patterns in clinical images. Deep learning is the …

Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data

T Jo, K Nho, AJ Saykin - Frontiers in aging neuroscience, 2019 - frontiersin.org
Deep learning, a state-of-the-art machine learning approach, has shown outstanding
performance over traditional machine learning in identifying intricate structures in complex …

On the analyses of medical images using traditional machine learning techniques and convolutional neural networks

S Iqbal, A N. Qureshi, J Li, T Mahmood - Archives of Computational …, 2023 - Springer
Convolutional neural network (CNN) has shown dissuasive accomplishment on different
areas especially Object Detection, Segmentation, Reconstruction (2D and 3D), Information …

A deep learning approach for automated diagnosis and multi-class classification of Alzheimer's disease stages using resting-state fMRI and residual neural networks

F Ramzan, MUG Khan, A Rehmat, S Iqbal… - Journal of medical …, 2020 - Springer
Alzheimer's disease (AD) is an incurable neurodegenerative disorder accounting for 70%–
80% dementia cases worldwide. Although, research on AD has increased in recent years …

Machine learning techniques for the diagnosis of Alzheimer's disease: A review

M Tanveer, B Richhariya, RU Khan… - ACM Transactions on …, 2020 - dl.acm.org
Alzheimer's disease is an incurable neurodegenerative disease primarily affecting the
elderly population. Efficient automated techniques are needed for early diagnosis of …

Deep learning based multimodal biomedical data fusion: An overview and comparative review

J Duan, J Xiong, Y Li, W Ding - Information Fusion, 2024 - Elsevier
Multimodal biomedical data fusion plays a pivotal role in distilling comprehensible and
actionable insights by seamlessly integrating disparate biomedical data from multiple …

Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis

B Shickel, PJ Tighe, A Bihorac… - IEEE journal of …, 2017 - ieeexplore.ieee.org
The past decade has seen an explosion in the amount of digital information stored in
electronic health records (EHRs). While primarily designed for archiving patient information …

A survey on deep learning in medical image analysis

G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi… - Medical image …, 2017 - Elsevier
Deep learning algorithms, in particular convolutional networks, have rapidly become a
methodology of choice for analyzing medical images. This paper reviews the major deep …

Deep learning to detect Alzheimer's disease from neuroimaging: A systematic literature review

MA Ebrahimighahnavieh, S Luo, R Chiong - Computer methods and …, 2020 - Elsevier
Alzheimer's Disease (AD) is one of the leading causes of death in developed countries.
From a research point of view, impressive results have been reported using computer-aided …

Applications of deep learning and reinforcement learning to biological data

M Mahmud, MS Kaiser, A Hussain… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Rapid advances in hardware-based technologies during the past decades have opened up
new possibilities for life scientists to gather multimodal data in various application domains …