Using radial basis function networks for function approximation and classification

Y Wu, H Wang, B Zhang, KL Du - … Scholarly Research Notices, 2012 - Wiley Online Library
The radial basis function (RBF) network has its foundation in the conventional approximation
theory. It has the capability of universal approximation. The RBF network is a popular …

[图书][B] Neural networks in a softcomputing framework

KL Du, MNS Swamy - 2006 - Springer
Conventional model-based data processing methods are computationally expensive and
require experts' knowledge for the modelling of a system. Neural networks are a model-free …

[PDF][PDF] Survey of neural transfer functions

W Duch, N Jankowski - Neural computing surveys, 1999 - fizyka.umk.pl
The choice of transfer functions may strongly influence complexity and performance of
neural networks. Although sigmoidal transfer functions are the most common there is no a …

Radial basis function networks

KL Du, MNS Swamy - Neural networks in a softcomputing framework, 2006 - Springer
The RBFN is a universal approximator, with a solid foundation in the conventional
approximation theory. The RBFN is a popular alternative to the MLP, since it has a simpler …

Towards comprehensive foundations of computational intelligence

W Duch - Challenges for Computational Intelligence, 2007 - Springer
Although computational intelligence (CI) covers a vast variety of different methods it still
lacks an integrative theory. Several proposals for CI foundations are discussed: computing …

[PDF][PDF] Ontogeniczne sieci neuronowe

N Jankowski, W Duch - O sieciach zmieniających swoją …, 2003 - wwwold.fizyka.umk.pl
W pracy przedstawiono przegląd ontogenicznych modeli sieci neuronowych, czyli takich
modeli, które dopasowują swoją strukturę (liczbę neuronów i połączeń pomiędzy nimi) do …

[PDF][PDF] Optimal transfer function neural networks.

N Jankowski, W Duch - ESANN, 2001 - wwwold.fizyka.umk.pl
Neural networks use neurons of the same type in each layer but such architecture cannot
lead to data models of optimal complexity and accuracy. Networks with architectures …

Application of the Neural Networks in Events Classification in the Measurement of the Spin Structure of the Deuteron

R Sulej, K Zaremba, K Kurek… - … Science and Technology, 2007 - iopscience.iop.org
In this paper, we present the application of a neural network for events classification in a
high-energy physics experiment. As a network model we use a multi-layer perceptron with a …

Computationally efficient sequential learning algorithms for direct link resource-allocating networks

VS Asirvadam, SF McLoone, GW Irwin - Neurocomputing, 2005 - Elsevier
Computationally efficient sequential learning algorithms are developed for direct-link
resource-allocating networks (DRANs). These are achieved by decomposing existing …

Fast and efficient sequential learning algorithms using direct-link RBF networks

VS Asirvadam, SF McLoone… - 2003 IEEE XIII Workshop …, 2003 - ieeexplore.ieee.org
Novel fast and efficient sequential learning algorithms are proposed for direct-link radial
basis function (DRBF) networks. The dynamic DRBF network is trained using the recently …