Privacy-preserving machine learning: Methods, challenges and directions

R Xu, N Baracaldo, J Joshi - arXiv preprint arXiv:2108.04417, 2021 - arxiv.org
Machine learning (ML) is increasingly being adopted in a wide variety of application
domains. Usually, a well-performing ML model relies on a large volume of training data and …

Crypten: Secure multi-party computation meets machine learning

B Knott, S Venkataraman, A Hannun… - Advances in …, 2021 - proceedings.neurips.cc
Secure multi-party computation (MPC) allows parties to perform computations on data while
keeping that data private. This capability has great potential for machine-learning …

Towards practical secure neural network inference: the journey so far and the road ahead

ZÁ Mann, C Weinert, D Chabal, JW Bos - ACM Computing Surveys, 2023 - dl.acm.org
Neural networks (NNs) have become one of the most important tools for artificial
intelligence. Well-designed and trained NNs can perform inference (eg, make decisions or …

Delphi: A cryptographic inference system for neural networks

P Mishra, R Lehmkuhl, A Srinivasan, W Zheng… - Proceedings of the …, 2020 - dl.acm.org
Many companies provide neural network prediction services to users for a wide range of
applications. However, current prediction systems compromise one party's privacy: either the …

Bolt: Privacy-preserving, accurate and efficient inference for transformers

Q Pang, J Zhu, H Möllering, W Zheng… - … IEEE Symposium on …, 2024 - ieeexplore.ieee.org
The advent of transformers has brought about significant advancements in traditional
machine learning tasks. However, their pervasive deployment has raised concerns about …

CryptGPU: Fast privacy-preserving machine learning on the GPU

S Tan, B Knott, Y Tian, DJ Wu - 2021 IEEE Symposium on …, 2021 - ieeexplore.ieee.org
We introduce CryptGPU, a system for privacy-preserving machine learning that implements
all operations on the GPU (graphics processing unit). Just as GPUs played a pivotal role in …

Cryptflow2: Practical 2-party secure inference

D Rathee, M Rathee, N Kumar, N Chandran… - Proceedings of the …, 2020 - dl.acm.org
We present CrypTFlow2, a cryptographic framework for secure inference over realistic Deep
Neural Networks (DNNs) using secure 2-party computation. CrypTFlow2 protocols are both …

Falcon: Honest-majority maliciously secure framework for private deep learning

S Wagh, S Tople, F Benhamouda, E Kushilevitz… - arXiv preprint arXiv …, 2020 - arxiv.org
We propose Falcon, an end-to-end 3-party protocol for efficient private training and
inference of large machine learning models. Falcon presents four main advantages-(i) It is …

Cryptflow: Secure tensorflow inference

N Kumar, M Rathee, N Chandran… - … IEEE Symposium on …, 2020 - ieeexplore.ieee.org
We present CrypTFlow, a first of its kind system that converts TensorFlow inference code into
Secure Multi-party Computation (MPC) protocols at the push of a button. To do this, we build …

Experimenting with zero-knowledge proofs of training

S Garg, A Goel, S Jha, S Mahloujifar… - Proceedings of the …, 2023 - dl.acm.org
How can a model owner prove they trained their model according to the correct
specification? More importantly, how can they do so while preserving the privacy of the …