An introductory review of deep learning for prediction models with big data

F Emmert-Streib, Z Yang, H Feng, S Tripathi… - Frontiers in Artificial …, 2020 - frontiersin.org
Deep learning models stand for a new learning paradigm in artificial intelligence (AI) and
machine learning. Recent breakthrough results in image analysis and speech recognition …

Deep learning models for cloud, edge, fog, and IoT computing paradigms: Survey, recent advances, and future directions

S Ahmad, I Shakeel, S Mehfuz, J Ahmad - Computer Science Review, 2023 - Elsevier
In recent times, the machine learning (ML) community has recognized the deep learning
(DL) computing model as the Gold Standard. DL has gradually become the most widely …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals

Z Khademi, F Ebrahimi, HM Kordy - Computers in biology and medicine, 2022 - Elsevier
Abstract In the Motor Imagery (MI)-based Brain Computer Interface (BCI), users' intention is
converted into a control signal through processing a specific pattern in brain signals …

Neural natural language processing for unstructured data in electronic health records: a review

I Li, J Pan, J Goldwasser, N Verma, WP Wong… - Computer Science …, 2022 - Elsevier
Electronic health records (EHRs), digital collections of patient healthcare events and
observations, are ubiquitous in medicine and critical to healthcare delivery, operations, and …

[HTML][HTML] On the road to explainable AI in drug-drug interactions prediction: A systematic review

TH Vo, NTK Nguyen, QH Kha, NQK Le - Computational and Structural …, 2022 - Elsevier
Over the past decade, polypharmacy instances have been common in multi-diseases
treatment. However, unwanted drug-drug interactions (DDIs) that might cause unexpected …

Named entity recognition and relation detection for biomedical information extraction

N Perera, M Dehmer, F Emmert-Streib - Frontiers in cell and …, 2020 - frontiersin.org
The number of scientific publications in the literature is steadily growing, containing our
knowledge in the biomedical, health, and clinical sciences. Since there is currently no …

Inter-sentence relation extraction with document-level graph convolutional neural network

SK Sahu, F Christopoulou, M Miwa… - arXiv preprint arXiv …, 2019 - arxiv.org
Inter-sentence relation extraction deals with a number of complex semantic relationships in
documents, which require local, non-local, syntactic and semantic dependencies. Existing …

Toxicity prediction based on artificial intelligence: A multidisciplinary overview

E Pérez Santín, R Rodríguez Solana… - Wiley …, 2021 - Wiley Online Library
The use and production of chemical compounds are subjected to strong legislative pressure.
Chemical toxicity and adverse effects derived from exposure to chemicals are key regulatory …

Drug–drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths

Y Zhang, W Zheng, H Lin, J Wang, Z Yang… - …, 2018 - academic.oup.com
Motivation Adverse events resulting from drug-drug interactions (DDI) pose a serious health
issue. The ability to automatically extract DDIs described in the biomedical literature could …