Adaptive neuro-fuzzy inference system: Overview, strengths, limitations, and solutions

MNM Salleh, N Talpur, K Hussain - Data Mining and Big Data: Second …, 2017 - Springer
Adaptive neuro-fuzzy inference system (ANFIS) is efficient estimation model not only among
neuro-fuzzy systems but also various other machine learning techniques. Despite …

Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search

E Dodangeh, M Panahi, F Rezaie, S Lee, DT Bui… - Journal of …, 2020 - Elsevier
Floods are among the deadliest natural hazards for humans and the environment.
Identifying the most flood-susceptible areas is a fundamental step in the development of …

Determination of bubble point pressure and oil formation volume factor: Extra trees compared with LSSVM-CSA hybrid and ANFIS models

M Seyyedattar, MM Ghiasi, S Zendehboudi, S Butt - Fuel, 2020 - Elsevier
Successful field development relies on effective reservoir management, which, in turn, is, to
a great extent, influenced by the knowledge of reservoir fluid properties and phase …

Evolutionary optimization of biogas production from food, fruit, and vegetable (FFV) waste

OO Olatunji, PA Adedeji, N Madushele… - Biomass Conversion …, 2024 - Springer
The success of anaerobic digestion (AD) process for biogas production is contingent upon
complex mix of operating factors, process conditions, and feedstock types, which could be …

A hierarchical procedure for the synthesis of ANFIS networks

M Panella - Advances in Fuzzy Systems, 2012 - Wiley Online Library
Adaptive neurofuzzy inference systems (ANFIS) represent an efficient technique for the
solution of function approximation problems. When numerical samples are available in this …

Comparing methods for creating a national random sample of twitter users

M Alizadeh, D Zare, Z Samei, M Alizadeh… - Social Network Analysis …, 2024 - Springer
Twitter data has been widely used by researchers across various social and computer
science disciplines. A common aim when working with Twitter data is the construction of a …

Distributed learning of random weights fuzzy neural networks

R Fierimonte, M Barbato, A Rosato… - … Conference on Fuzzy …, 2016 - ieeexplore.ieee.org
In this paper, we propose a scalable, decentralized learning algorithm for Random Weights
Fuzzy Neural Networks, when training data is distributed through a network of …

A novel FMEA model using hybrid ANFIS–Taguchi method

S Boran, SH Gökler - Arabian Journal for Science and Engineering, 2020 - Springer
Failure mode and effects analysis (FMEA) is a useful method to analyze and then prioritize
failure, but it has many drawbacks. First of them is risk factors, severity, occurrence and …

PCA Esaslı Hibrit ANFIS-Taguchi Yöntemi ile Kan Bankası için Talep Tahmini

SH Gökler, S Boran - Bilişim Teknolojileri Dergisi, 2020 - dergipark.org.tr
Kan; hastalıklar, ameliyatlar veya yaralanmalar nedeniyle her gün binlerce insan tarafından
ihtiyaç duyulan hayati bir üründür. Bu nedenle hastanelerin kan ihtiyacını karşılayan kan …

PCA Esaslı Hibrit ANFIS-Taguchi Yöntemi ile Kan Bankası için Talep Tahmini.

S Hatice GÖKLER, S BORAN - International Journal of …, 2020 - search.ebscohost.com
Kan; hastalıklar, ameliyatlar veya yaralanmalar nedeniyle her gün binlerce insan tarafından
ihtiyaç duyulan hayati bir üründür. Bu nedenle hastanelerin kan ihtiyacını karşılayan kan …