Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries

N Yao, X Chen, ZH Fu, Q Zhang - Chemical Reviews, 2022 - ACS Publications
Rechargeable batteries have become indispensable implements in our daily life and are
considered a promising technology to construct sustainable energy systems in the future …

Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

MACE: Higher order equivariant message passing neural networks for fast and accurate force fields

I Batatia, DP Kovacs, G Simm… - Advances in Neural …, 2022 - proceedings.neurips.cc
Creating fast and accurate force fields is a long-standing challenge in computational
chemistry and materials science. Recently, Equivariant Message Passing Neural Networks …

Learning local equivariant representations for large-scale atomistic dynamics

A Musaelian, S Batzner, A Johansson, L Sun… - Nature …, 2023 - nature.com
A simultaneously accurate and computationally efficient parametrization of the potential
energy surface of molecules and materials is a long-standing goal in the natural sciences …

A universal graph deep learning interatomic potential for the periodic table

C Chen, SP Ong - Nature Computational Science, 2022 - nature.com
Interatomic potentials (IAPs), which describe the potential energy surface of atoms, are a
fundamental input for atomistic simulations. However, existing IAPs are either fitted to narrow …

LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales

AP Thompson, HM Aktulga, R Berger… - Computer Physics …, 2022 - Elsevier
Since the classical molecular dynamics simulator LAMMPS was released as an open source
code in 2004, it has become a widely-used tool for particle-based modeling of materials at …

Bridging the complexity gap in computational heterogeneous catalysis with machine learning

T Mou, HS Pillai, S Wang, M Wan, X Han… - Nature Catalysis, 2023 - nature.com
Heterogeneous catalysis underpins a wide variety of industrial processes including energy
conversion, chemical manufacturing and environmental remediation. Significant advances …

Machine learning for high-entropy alloys: Progress, challenges and opportunities

X Liu, J Zhang, Z Pei - Progress in Materials Science, 2023 - Elsevier
High-entropy alloys (HEAs) have attracted extensive interest due to their exceptional
mechanical properties and the vast compositional space for new HEAs. However …

DeePMD-kit v2: A software package for deep potential models

J Zeng, D Zhang, D Lu, P Mo, Z Li, Y Chen… - The Journal of …, 2023 - pubs.aip.org
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics
simulations using machine learning potentials known as Deep Potential (DP) models. This …

Four generations of high-dimensional neural network potentials

J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …