Advances in adversarial attacks and defenses in computer vision: A survey

N Akhtar, A Mian, N Kardan, M Shah - IEEE Access, 2021 - ieeexplore.ieee.org
Deep Learning is the most widely used tool in the contemporary field of computer vision. Its
ability to accurately solve complex problems is employed in vision research to learn deep …

A survey of adversarial defenses and robustness in nlp

S Goyal, S Doddapaneni, MM Khapra… - ACM Computing …, 2023 - dl.acm.org
In the past few years, it has become increasingly evident that deep neural networks are not
resilient enough to withstand adversarial perturbations in input data, leaving them …

Red teaming language models with language models

E Perez, S Huang, F Song, T Cai, R Ring… - arXiv preprint arXiv …, 2022 - arxiv.org
Language Models (LMs) often cannot be deployed because of their potential to harm users
in hard-to-predict ways. Prior work identifies harmful behaviors before deployment by using …

A survey of safety and trustworthiness of large language models through the lens of verification and validation

X Huang, W Ruan, W Huang, G Jin, Y Dong… - Artificial Intelligence …, 2024 - Springer
Large language models (LLMs) have exploded a new heatwave of AI for their ability to
engage end-users in human-level conversations with detailed and articulate answers across …

Digital twin: Values, challenges and enablers from a modeling perspective

A Rasheed, O San, T Kvamsdal - IEEE access, 2020 - ieeexplore.ieee.org
Digital twin can be defined as a virtual representation of a physical asset enabled through
data and simulators for real-time prediction, optimization, monitoring, controlling, and …

Graph structure learning for robust graph neural networks

W Jin, Y Ma, X Liu, X Tang, S Wang… - Proceedings of the 26th …, 2020 - dl.acm.org
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
However, recent studies show that GNNs are vulnerable to carefully-crafted perturbations …

Trustworthy ai: A computational perspective

H Liu, Y Wang, W Fan, X Liu, Y Li, S Jain, Y Liu… - ACM Transactions on …, 2022 - dl.acm.org
In the past few decades, artificial intelligence (AI) technology has experienced swift
developments, changing everyone's daily life and profoundly altering the course of human …

On the detection of digital face manipulation

H Dang, F Liu, J Stehouwer, X Liu… - Proceedings of the …, 2020 - openaccess.thecvf.com
Detecting manipulated facial images and videos is an increasingly important topic in digital
media forensics. As advanced face synthesis and manipulation methods are made …

[图书][B] Synthetic data for deep learning

SI Nikolenko - 2021 - Springer
You are holding in your hands… oh, come on, who holds books like this in their hands
anymore? Anyway, you are reading this, and it means that I have managed to release one of …

[图书][B] Deep learning on graphs

Y Ma, J Tang - 2021 - books.google.com
Deep learning on graphs has become one of the hottest topics in machine learning. The
book consists of four parts to best accommodate our readers with diverse backgrounds and …