Ensemble deep learning: A review

MA Ganaie, M Hu, AK Malik, M Tanveer… - … Applications of Artificial …, 2022 - Elsevier
Ensemble learning combines several individual models to obtain better generalization
performance. Currently, deep learning architectures are showing better performance …

Ensemble deep learning in bioinformatics

Y Cao, TA Geddes, JYH Yang, P Yang - Nature Machine Intelligence, 2020 - nature.com
The remarkable flexibility and adaptability of ensemble methods and deep learning models
have led to the proliferation of their application in bioinformatics research. Traditionally …

A dynamic ensemble learning algorithm for neural networks

KMR Alam, N Siddique, H Adeli - Neural Computing and Applications, 2020 - Springer
This paper presents a novel dynamic ensemble learning (DEL) algorithm for designing
ensemble of neural networks (NNs). DEL algorithm determines the size of ensemble, the …

State of the art of machine learning models in energy systems, a systematic review

A Mosavi, M Salimi, S Faizollahzadeh Ardabili… - Energies, 2019 - mdpi.com
Machine learning (ML) models have been widely used in the modeling, design and
prediction in energy systems. During the past two decades, there has been a dramatic …

Improving adversarial robustness via promoting ensemble diversity

T Pang, K Xu, C Du, N Chen… - … Conference on Machine …, 2019 - proceedings.mlr.press
Though deep neural networks have achieved significant progress on various tasks, often
enhanced by model ensemble, existing high-performance models can be vulnerable to …

[HTML][HTML] An effective ensemble deep learning framework for text classification

A Mohammed, R Kora - Journal of King Saud University-Computer and …, 2022 - Elsevier
Over the last decade Deep learning-based models surpasses classical machine learning
models in a variety of text classification tasks. The primary challenge with text classification …

Computer‐aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks

WK Moon, YW Lee, HH Ke, SH Lee, CS Huang… - Computer methods and …, 2020 - Elsevier
Breast ultrasound and computer aided diagnosis (CAD) has been used to classify tumors
into benignancy or malignancy. However, conventional CAD software has some problems …

Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics

C Zhang, P Lim, AK Qin, KC Tan - IEEE transactions on neural …, 2016 - ieeexplore.ieee.org
In numerous industrial applications where safety, efficiency, and reliability are among
primary concerns, condition-based maintenance (CBM) is often the most effective and …

Metaheuristic design of feedforward neural networks: A review of two decades of research

VK Ojha, A Abraham, V Snášel - Engineering Applications of Artificial …, 2017 - Elsevier
Over the past two decades, the feedforward neural network (FNN) optimization has been a
key interest among the researchers and practitioners of multiple disciplines. The FNN …

Ensemble classification and regression-recent developments, applications and future directions

Y Ren, L Zhang, PN Suganthan - IEEE Computational …, 2016 - ieeexplore.ieee.org
Ensemble methods use multiple models to get better performance. Ensemble methods have
been used in multiple research fields such as computational intelligence, statistics and …