Predictive models of sepsis-associated acute kidney injury based on machine learning: a scoping review

J Li, M Zhu, L Yan - Renal Failure, 2024 - Taylor & Francis
Background With the development of artificial intelligence, the application of machine
learning to develop predictive models for sepsis-associated acute kidney injury has made …

Exploring the role of Artificial Intelligence in Acute Kidney Injury management: a comprehensive review and future research agenda

DT Al-Absi, MCE Simsekler, MA Omar… - BMC Medical Informatics …, 2024 - Springer
This study reviews the studies utilizing Artificial Intelligence (AI) and AI-driven tools and
methods in managing Acute Kidney Injury (AKI). It categorizes the studies according to …

Development and validation of a deep learning algorithm for the prediction of serum creatinine in critically ill patients

G Ghanbari, JY Lam, SP Shashikumar, L Awdishu… - JAMIA …, 2024 - academic.oup.com
Abstract Objectives Serum creatinine (SCr) is the primary biomarker for assessing kidney
function; however, it may lag behind true kidney function, especially in instances of acute …

The development and validation of a prediction model for post-AKI outcomes of pediatric inpatients

C Zhang, X Liu, R Yan, X Nie, Y Peng… - Clinical Kidney …, 2025 - academic.oup.com
Background Acute kidney injury (AKI) is common in hospitalized children. A post-AKI
outcomes prediction model is important for the early detection of important clinical outcomes …

[HTML][HTML] Acute Kidney Injury Prognosis Prediction Using Machine Learning Methods: A Systematic Review

Y Lin, T Shi, G Kong - Kidney Medicine, 2024 - Elsevier
Rationale & Objective Accurate estimation of in-hospital outcomes for patients with acute
kidney injury (AKI) is crucial for aiding physicians in making optimal clinical decisions. We …

A machine learning-based approach for predicting renal function recovery in general ward patients with acute kidney injury

NJ Cho, I Jeong, Y Kim, DO Kim, SJ Ahn… - Kidney Research …, 2024 - pmc.ncbi.nlm.nih.gov
Background Acute kidney injury (AKI) is a significant challenge in healthcare. While there
are considerable researches dedicated to AKI patients, a crucial factor in their renal function …

[PDF][PDF] Einflussparameter für die Dialysetherapie,-bedarf und-dauer bei Kindern mit angeborenen Herzfehlern nach kardiochirurgischen Eingriffen

A Al-Hamad - 2024 - kups.ub.uni-koeln.de
Einflussparameter für die Dialysetherapie, -bedarf und -dauer bei Kindern mit angeborenen
Herzfehlern nach kardiochirurgischen Page 1 Aus dem Zentrum für Kinder- und Jugendmedizin …

Efficacy of machine learning algorithms versus conventional risk assessment tools in predicting acute kidney injury: a systematic review

JA de Vera Alvarado… - … Florida Journal of …, 2024 - ojs.southfloridapublishing.com
In this study, we investigated the efficacy of machine learning (ML) algorithms and compared
them to conventional risk assessment tools in predicting acute kidney injury (AKI). Our …

Вплив дисфункції тубулоінтерстицію нирок на наближений і віддалений прогноз у хворих на хронічну серцеву недостатність зі збереженою фракцією викиду …

ВВ Сиволап, ВА Лисенко, МО Світлий - 2024 - dspace.zsmu.edu.ua
Мета роботи–дослідити залежність наближеного (1 рік) та віддаленого (5 років)
прогнозу у хворих на хронічну серцеву недостатність (ХСН) ішемічного ґенезу зі …

Вплив дисфункції тубулоінтерстицію нирок на наближений і віддалений прогноз у хворих на хронічну серцеву недостатність зі збереженою фракцією викиду …

VV Syvolap, VA Lysenko, MO Svitlyi - Pathologia, 2024 - pat.zsmu.edu.ua
Aim. To study the dependence of the early-term (1 year) and long-term (5 years) prognosis
in patients with chronic heart failure (CHF) of ischemic origin with preserved left ventricular …