Quantum Rényi and f-Divergences from Integral Representations

C Hirche, M Tomamichel - Communications in Mathematical Physics, 2024 - Springer
Smooth Csiszár f-divergences can be expressed as integrals over so-called hockey stick
divergences. This motivates a natural quantum generalization in terms of quantum Hockey …

Entanglement cost for infinite-dimensional physical systems

H Yamasaki, K Kuroiwa, P Hayden, L Lami - arXiv preprint arXiv …, 2024 - arxiv.org
We prove that the entanglement cost equals the regularized entanglement of formation for
any infinite-dimensional quantum state $\rho_ {AB} $ with finite quantum entropy on at least …

Continuity of entropies via integral representations

M Berta, L Lami, M Tomamichel - IEEE Transactions on …, 2025 - ieeexplore.ieee.org
We show that Frenkel's integral representation of the quantum relative entropy provides a
natural framework to derive continuity bounds for quantum information measures. Our main …

Geometric relative entropies and barycentric Rényi divergences

M Mosonyi, G Bunth, P Vrana - Linear Algebra and its Applications, 2024 - Elsevier
We give systematic ways of defining monotone quantum relative entropies and (multi-
variate) quantum Rényi divergences starting from a set of monotone quantum relative …

Recoverability of quantum channels via hypothesis testing

A Jenčová - Letters in Mathematical Physics, 2024 - Springer
A quantum channel is sufficient with respect to a set of input states if it can be reversed on
this set. In the approximate version, the input states can be recovered within an error …

Reverse-type Data Processing Inequality

P Belzig, L Gao, G Smith, P Wu - arXiv preprint arXiv:2411.19890, 2024 - arxiv.org
The quantum data processing inequality states that two quantum states become harder to
distinguish when a noisy channel is applied. On the other hand, a reverse quantum data …

Limit distribution theory for quantum divergences

S Sreekumar, M Berta - IEEE Transactions on Information …, 2024 - ieeexplore.ieee.org
Estimation of quantum relative entropy and its Rényi generalizations is a fundamental
statistical task in quantum information theory, physics, and beyond. While several estimators …

Semidefinite optimization of the quantum relative entropy of channels

G Koßmann, MM Wilde - arXiv preprint arXiv:2410.16362, 2024 - arxiv.org
This paper introduces a method for calculating the quantum relative entropy of channels, an
essential quantity in quantum channel discrimination and resource theories of quantum …

Bounding the conditional von-Neumann entropy for device independent cryptography and randomness extraction

G Koßmann, R Schwonnek - arXiv preprint arXiv:2411.04858, 2024 - arxiv.org
This paper introduces a numerical framework for establishing lower bounds on the
conditional von-Neumann entropy in device-independent quantum cryptography and …

Optimising the relative entropy under semi definite constraints--A new tool for estimating key rates in QKD

G Koßmann, R Schwonnek - arXiv preprint arXiv:2404.17016, 2024 - arxiv.org
Finding the minimal relative entropy of two quantum states under semi definite constraints is
a pivotal problem located at the mathematical core of various applications in quantum …