GAN-based anomaly detection: A review

X Xia, X Pan, N Li, X He, L Ma, X Zhang, N Ding - Neurocomputing, 2022 - Elsevier
Supervised learning algorithms have shown limited use in the field of anomaly detection due
to the unpredictability and difficulty in acquiring abnormal samples. In recent years …

A unifying review of deep and shallow anomaly detection

L Ruff, JR Kauffmann, RA Vandermeulen… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …

Adbench: Anomaly detection benchmark

S Han, X Hu, H Huang, M Jiang… - Advances in Neural …, 2022 - proceedings.neurips.cc
Given a long list of anomaly detection algorithms developed in the last few decades, how do
they perform with regard to (i) varying levels of supervision,(ii) different types of anomalies …

Simplenet: A simple network for image anomaly detection and localization

Z Liu, Y Zhou, Y Xu, Z Wang - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
We propose a simple and application-friendly network (called SimpleNet) for detecting and
localizing anomalies. SimpleNet consists of four components:(1) a pre-trained Feature …

Cutpaste: Self-supervised learning for anomaly detection and localization

CL Li, K Sohn, J Yoon, T Pfister - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
We aim at constructing a high performance model for defect detection that detects unknown
anomalous patterns of an image without anomalous data. To this end, we propose a two …

A unified model for multi-class anomaly detection

Z You, L Cui, Y Shen, K Yang, X Lu… - Advances in Neural …, 2022 - proceedings.neurips.cc
Despite the rapid advance of unsupervised anomaly detection, existing methods require to
train separate models for different objects. In this work, we present UniAD that accomplishes …

[HTML][HTML] Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives

Y Himeur, K Ghanem, A Alsalemi, F Bensaali, A Amira - Applied Energy, 2021 - Elsevier
Enormous amounts of data are being produced everyday by sub-meters and smart sensors
installed in residential buildings. If leveraged properly, that data could assist end-users …

Fully convolutional cross-scale-flows for image-based defect detection

M Rudolph, T Wehrbein… - Proceedings of the …, 2022 - openaccess.thecvf.com
In industrial manufacturing processes, errors frequently occur at unpredictable times and in
unknown manifestations. We tackle this problem, known as automatic defect detection …

A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: Solutions and future challenges

M Salehi, H Mirzaei, D Hendrycks, Y Li… - arXiv preprint arXiv …, 2021 - arxiv.org
Machine learning models often encounter samples that are diverged from the training
distribution. Failure to recognize an out-of-distribution (OOD) sample, and consequently …

Deep learning for unsupervised anomaly localization in industrial images: A survey

X Tao, X Gong, X Zhang, S Yan… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Currently, deep learning-based visual inspection has been highly successful with the help of
supervised learning methods. However, in real industrial scenarios, the scarcity of defect …