Evolutionary computation for feature selection in classification: A comprehensive survey of solutions, applications and challenges

X Song, Y Zhang, W Zhang, C He, Y Hu, J Wang… - Swarm and Evolutionary …, 2024 - Elsevier
Feature selection (FS), as one of the most significant preprocessing techniques in the fields
of machine learning and pattern recognition, has received great attention. In recent years …

Feature subset selection for data and feature streams: a review

C Villa-Blanco, C Bielza, P Larrañaga - Artificial Intelligence Review, 2023 - Springer
Real-world problems are commonly characterized by a high feature dimensionality, which
hinders the modelling and descriptive analysis of the data. However, some of these data …

Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification

L Sun, T Wang, W Ding, J Xu, Y Lin - Information Sciences, 2021 - Elsevier
In recent years, feature selection for multilabel classification has attracted attention in
machine learning and data mining. However, some feature selection methods ignore the …

Learning correlation information for multi-label feature selection

Y Fan, J Liu, J Tang, P Liu, Y Lin, Y Du - Pattern Recognition, 2024 - Elsevier
In many real-world multi-label applications, the content of multi-label data is usually
characterized by high dimensional features, which contains complex correlation information …

Feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy

L Sun, T Yin, W Ding, Y Qian… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Recently, multilabel classification has generated considerable research interest. However,
the high dimensionality of multilabel data incurs high costs; moreover, in many real …

A survey on multi-label feature selection from perspectives of label fusion

W Qian, J Huang, F Xu, W Shu, W Ding - Information Fusion, 2023 - Elsevier
With the rapid advancement of big data technology, high-dimensional datasets comprising
multi-label data have become prevalent in various fields. However, these datasets often …

MFSJMI: Multi-label feature selection considering join mutual information and interaction weight

P Zhang, G Liu, J Song - Pattern Recognition, 2023 - Elsevier
Multi-label feature selection captures a reliable and informative feature subset from high-
dimensional multi-label data, which plays an important role in pattern recognition. In …

A novel filter feature selection method using rough set for short text data

R Cekik, AK Uysal - Expert Systems with Applications, 2020 - Elsevier
High dimensionality problem is an important concern for short text classification due to its
effect on computational cost and accuracy of classifiers. Also, short text data, besides being …

Multi-objective PSO based online feature selection for multi-label classification

D Paul, A Jain, S Saha, J Mathew - Knowledge-Based Systems, 2021 - Elsevier
Feature selection approaches aim to select a set of prominent features that best describe the
data to improve the efficiency without degrading the performance of the model. In many real …

A novel hybrid feature selection method considering feature interaction in neighborhood rough set

J Wan, H Chen, Z Yuan, T Li, X Yang… - Knowledge-Based Systems, 2021 - Elsevier
The interaction between features can provide essential information that affects the
performances of learning models. Nevertheless, most feature selection methods do not take …