[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey

P Qi, D Chiaro, A Guzzo, M Ianni, G Fortino… - Future Generation …, 2024 - Elsevier
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …

Federated learning for smart cities: A comprehensive survey

S Pandya, G Srivastava, R Jhaveri, MR Babu… - Sustainable Energy …, 2023 - Elsevier
With the advent of new technologies such as the Artificial Intelligence of Things (AIoT), big
data, fog computing, and edge computing, smart city applications have suffered from issues …

[HTML][HTML] A survey of large language models for healthcare: from data, technology, and applications to accountability and ethics

K He, R Mao, Q Lin, Y Ruan, X Lan, M Feng… - Information …, 2025 - Elsevier
The utilization of large language models (LLMs) for Healthcare has generated both
excitement and concern due to their ability to effectively respond to free-text queries with …

Blockchain-based federated learning for securing internet of things: A comprehensive survey

W Issa, N Moustafa, B Turnbull, N Sohrabi… - ACM Computing …, 2023 - dl.acm.org
The Internet of Things (IoT) ecosystem connects physical devices to the internet, offering
significant advantages in agility, responsiveness, and potential environmental benefits. The …

Federated learning for healthcare: Systematic review and architecture proposal

RS Antunes, C André da Costa, A Küderle… - ACM Transactions on …, 2022 - dl.acm.org
The use of machine learning (ML) with electronic health records (EHR) is growing in
popularity as a means to extract knowledge that can improve the decision-making process in …

Blockchain-empowered federated learning: Challenges, solutions, and future directions

J Zhu, J Cao, D Saxena, S Jiang, H Ferradi - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning is a privacy-preserving machine learning technique that trains models
across multiple devices holding local data samples without exchanging them. There are …

[HTML][HTML] A survey on large language model (llm) security and privacy: The good, the bad, and the ugly

Y Yao, J Duan, K Xu, Y Cai, Z Sun, Y Zhang - High-Confidence Computing, 2024 - Elsevier
Abstract Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized
natural language understanding and generation. They possess deep language …

A state-of-the-art survey on solving non-iid data in federated learning

X Ma, J Zhu, Z Lin, S Chen, Y Qin - Future Generation Computer Systems, 2022 - Elsevier
Federated Learning (FL) proposed in recent years has received significant attention from
researchers in that it can enable multiple clients to cooperatively train global models without …

[HTML][HTML] Federated learning for secure IoMT-applications in smart healthcare systems: A comprehensive review

S Rani, A Kataria, S Kumar, P Tiwari - Knowledge-based systems, 2023 - Elsevier
Recent developments in the Internet of Things (IoT) and various communication
technologies have reshaped numerous application areas. Nowadays, IoT is assimilated into …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y Jin - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …