В настоящей статье представлен обзор известных результатов в области предельного поведения вероятностей свойств первого порядка случайных графов. Совокупность …
AM Raigorodskii - Fundamenta Informaticae, 2016 - content.iospress.com
In this paper, we overview three closely related problems: Nelson–Hadwiger problem on coloring spaces with forbidden monochromatics distances; Borsuk's problem on partitioning …
DA Shabanov - Discrete Applied Mathematics, 2020 - Elsevier
The paper deals with estimating the r-colorability threshold for a random k-uniform hypergraph in the binomial model H (n, k, p). We consider the sparse case, when the …
S Kiselev, A Kupavskii - arXiv preprint arXiv:1810.01161, 2018 - arxiv.org
Given positive integers $ n\ge 2k $, the {\it Kneser graph} $ KG_ {n, k} $ is a graph whose vertex set is the collection of all $ k $-element subsets of the set $\{1,\ldots, n\} $, with edges …
A Kupavskii - arXiv preprint arXiv:1612.03868, 2016 - arxiv.org
The Kneser graph $ KG_ {n, k} $ is the graph whose vertices are the $ k $-element subsets of $[n], $ with two vertices adjacent if and only if the corresponding sets are disjoint. A …
AV Bobu, AE Kupriyanov, AM Raigorodskii - Mathematical Notes, 2020 - Springer
Graphs which are analogs of Kneser graphs are studied. The problem of determining the chromatic numbers of these graphs is considered. It is shown that their structure is similar to …
MM Pyaderkin - Discrete Applied Mathematics, 2019 - Elsevier
We study the chromatic number of the graph G (n, 3, 1), whose vertices are all 3-element subsets of [n]={1, 2,…, n}, and there is an edge between two vertices if the corresponding …
A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is …