Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries

Y Huang, L Lin, C Zhang, L Liu, Y Li, Z Qiao… - Advanced …, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation
energy storage systems due to their high energy density and cost‐effectiveness. However …

Recent Progress for Concurrent Realization of Shuttle‐Inhibition and Dendrite‐Free Lithium–Sulfur Batteries

W Yao, J Xu, L Ma, X Lu, D Luo, J Qian… - Advanced …, 2023 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have become one of the most promising new‐
generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg− 1) …

Advances in high sulfur loading cathodes for practical lithium‐sulfur batteries

M Wang, Z Bai, T Yang, C Nie, X Xu… - Advanced Energy …, 2022 - Wiley Online Library
Lithium‐sulfur batteries hold great potential for next‐generation energy storage systems,
due to their high theoretical energy density and the natural abundance of sulfur. Although …

Advances in lithium–sulfur batteries: from academic research to commercial viability

Y Chen, T Wang, H Tian, D Su, Q Zhang… - Advanced …, 2021 - Wiley Online Library
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …

Li-S batteries: challenges, achievements and opportunities

H Raza, S Bai, J Cheng, S Majumder, H Zhu… - Electrochemical Energy …, 2023 - Springer
To realize a low-carbon economy and sustainable energy supply, the development of
energy storage devices has aroused intensive attention. Lithium-sulfur (Li-S) batteries are …

[HTML][HTML] Electrolyte solutions design for lithium-sulfur batteries

Y Liu, Y Elias, J Meng, D Aurbach, R Zou, D Xia… - Joule, 2021 - cell.com
Summary Lithium-sulfur (Li-S) batteries promise high energy density for next-generation
energy storage systems, yet many challenges remain. Li-S batteries follow a conversion …

Expediting Stepwise Sulfur Conversion via Spontaneous Built‐In Electric Field and Binary Sulfiphilic Effect of Conductive NbB2‐MXene Heterostructure in Lithium …

D Lu, X Wang, Y Hu, L Yue, Z Shao… - Advanced Functional …, 2023 - Wiley Online Library
Fabricating metal boride heterostructures and deciphering their interface interaction
mechanism on accelerating polysulfide conversion at atomic levels are meaningful yet …

Emerging catalysts to promote kinetics of lithium–sulfur batteries

P Wang, B Xi, M Huang, W Chen… - Advanced Energy …, 2021 - Wiley Online Library
Lithium–sulfur batteries (LSBs) with a high theoretical capacity of 1675 mAh g− 1 hold
promise in the realm of high‐energy‐density Li–metal batteries. To cope with the shuttle …

A perspective toward practical lithium–sulfur batteries

M Zhao, BQ Li, XQ Zhang, JQ Huang… - ACS Central …, 2020 - ACS Publications
Lithium–sulfur (Li–S) batteries have long been expected to be a promising high-energy-
density secondary battery system since their first prototype in the 1960s. During the past …

Niobium Diboride Nanoparticles Accelerating Polysulfide Conversion and Directing Li2S Nucleation Enabled High Areal Capacity Lithium–Sulfur Batteries

B Wang, L Wang, B Zhang, S Zeng, F Tian, J Dou… - ACS …, 2022 - ACS Publications
The shuttle effect of polysulfides and Li2S sluggish nucleation are the major problems
hampering the further development of lithium–sulfur batteries. The reasonable design for …