Four generations of high-dimensional neural network potentials

J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …

Physics-inspired structural representations for molecules and materials

F Musil, A Grisafi, AP Bartók, C Ortner… - Chemical …, 2021 - ACS Publications
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …

Machine learning and the physical sciences

G Carleo, I Cirac, K Cranmer, L Daudet, M Schuld… - Reviews of Modern …, 2019 - APS
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …

Neural network potential energy surfaces for small molecules and reactions

S Manzhos, T Carrington Jr - Chemical Reviews, 2020 - ACS Publications
We review progress in neural network (NN)-based methods for the construction of
interatomic potentials from discrete samples (such as ab initio energies) for applications in …

From DFT to machine learning: recent approaches to materials science–a review

GR Schleder, ACM Padilha, CM Acosta… - Journal of Physics …, 2019 - iopscience.iop.org
Recent advances in experimental and computational methods are increasing the quantity
and complexity of generated data. This massive amount of raw data needs to be stored and …

[HTML][HTML] DScribe: Library of descriptors for machine learning in materials science

L Himanen, MOJ Jäger, EV Morooka, FF Canova… - Computer Physics …, 2020 - Elsevier
DScribe is a software package for machine learning that provides popular feature
transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the …

Extending machine learning beyond interatomic potentials for predicting molecular properties

N Fedik, R Zubatyuk, M Kulichenko, N Lubbers… - Nature Reviews …, 2022 - nature.com
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …

Quantum chemistry in the age of machine learning

PO Dral - The journal of physical chemistry letters, 2020 - ACS Publications
As the quantum chemistry (QC) community embraces machine learning (ML), the number of
new methods and applications based on the combination of QC and ML is surging. In this …

OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features

Z Qiao, M Welborn, A Anandkumar… - The Journal of …, 2020 - pubs.aip.org
We introduce a machine learning method in which energy solutions from the Schrödinger
equation are predicted using symmetry adapted atomic orbital features and a graph neural …

Performance and cost assessment of machine learning interatomic potentials

Y Zuo, C Chen, X Li, Z Deng, Y Chen… - The Journal of …, 2020 - ACS Publications
Machine learning of the quantitative relationship between local environment descriptors and
the potential energy surface of a system of atoms has emerged as a new frontier in the …