[HTML][HTML] Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

J Waring, C Lindvall, R Umeton - Artificial intelligence in medicine, 2020 - Elsevier
Objective This work aims to provide a review of the existing literature in the field of
automated machine learning (AutoML) to help healthcare professionals better utilize …

Generalizing from a few examples: A survey on few-shot learning

Y Wang, Q Yao, JT Kwok, LM Ni - ACM computing surveys (csur), 2020 - dl.acm.org
Machine learning has been highly successful in data-intensive applications but is often
hampered when the data set is small. Recently, Few-shot Learning (FSL) is proposed to …

Autokeras: An automl library for deep learning

H Jin, F Chollet, Q Song, X Hu - Journal of machine Learning research, 2023 - jmlr.org
To use deep learning, one needs to be familiar with various software tools like TensorFlow
or Keras, as well as various model architecture and optimization best practices. Despite …

Auto-sklearn 2.0: Hands-free automl via meta-learning

M Feurer, K Eggensperger, S Falkner… - Journal of Machine …, 2022 - jmlr.org
Automated Machine Learning (AutoML) supports practitioners and researchers with the
tedious task of designing machine learning pipelines and has recently achieved substantial …

Review of ML and AutoML solutions to forecast time-series data

A Alsharef, K Aggarwal, Sonia, M Kumar… - … Methods in Engineering, 2022 - Springer
Time-series forecasting is a significant discipline of data modeling where past observations
of the same variable are analyzed to predict the future values of the time series. Its …

Auto-keras: An efficient neural architecture search system

H Jin, Q Song, X Hu - Proceedings of the 25th ACM SIGKDD …, 2019 - dl.acm.org
Neural architecture search (NAS) has been proposed to automatically tune deep neural
networks, but existing search algorithms, eg, NASNet, PNAS, usually suffer from expensive …

[PDF][PDF] Taking human out of learning applications: A survey on automated machine learning

Q Yao, M Wang, Y Chen, W Dai, YF Li… - arXiv preprint arXiv …, 2018 - academia.edu
Machine learning techniques have deeply rooted in our everyday life. However, since it is
knowledge-and labor-intensive to pursue good learning performance, humans are heavily …

Human-AI collaboration in data science: Exploring data scientists' perceptions of automated AI

D Wang, JD Weisz, M Muller, P Ram, W Geyer… - Proceedings of the …, 2019 - dl.acm.org
The rapid advancement of artificial intelligence (AI) is changing our lives in many ways. One
application domain is data science. New techniques in automating the creation of AI, known …

Ten quick tips for machine learning in computational biology

D Chicco - BioData mining, 2017 - Springer
Abstract Machine learning has become a pivotal tool for many projects in computational
biology, bioinformatics, and health informatics. Nevertheless, beginners and biomedical …

Benchmark and survey of automated machine learning frameworks

MA Zöller, MF Huber - Journal of artificial intelligence research, 2021 - jair.org
Abstract Machine learning (ML) has become a vital part in many aspects of our daily life.
However, building well performing machine learning applications requires highly …