Diffusion models in vision: A survey

FA Croitoru, V Hondru, RT Ionescu… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Denoising diffusion models represent a recent emerging topic in computer vision,
demonstrating remarkable results in the area of generative modeling. A diffusion model is a …

Generative models as an emerging paradigm in the chemical sciences

DM Anstine, O Isayev - Journal of the American Chemical Society, 2023 - ACS Publications
Traditional computational approaches to design chemical species are limited by the need to
compute properties for a vast number of candidates, eg, by discriminative modeling …

Dual-threshold attention-guided GAN and limited infrared thermal images for rotating machinery fault diagnosis under speed fluctuation

H Shao, W Li, B Cai, J Wan, Y Xiao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
End-to-end intelligent diagnosis of rotating machinery under speed fluctuation and limited
samples is challenging in industrial practice. The existing limited samples methods usually …

Layoutdiffusion: Controllable diffusion model for layout-to-image generation

G Zheng, X Zhou, X Li, Z Qi… - Proceedings of the …, 2023 - openaccess.thecvf.com
Recently, diffusion models have achieved great success in image synthesis. However, when
it comes to the layout-to-image generation where an image often has a complex scene of …

Diffusion-gan: Training gans with diffusion

Z Wang, H Zheng, P He, W Chen, M Zhou - arXiv preprint arXiv …, 2022 - arxiv.org
Generative adversarial networks (GANs) are challenging to train stably, and a promising
remedy of injecting instance noise into the discriminator input has not been very effective in …

Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models

S Bond-Taylor, A Leach, Y Long… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Deep generative models are a class of techniques that train deep neural networks to model
the distribution of training samples. Research has fragmented into various interconnected …

St++: Make self-training work better for semi-supervised semantic segmentation

L Yang, W Zhuo, L Qi, Y Shi… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Self-training via pseudo labeling is a conventional, simple, and popular pipeline to leverage
unlabeled data. In this work, we first construct a strong baseline of self-training (namely ST) …

Physics-informed machine learning: case studies for weather and climate modelling

K Kashinath, M Mustafa, A Albert… - … of the Royal …, 2021 - royalsocietypublishing.org
Machine learning (ML) provides novel and powerful ways of accurately and efficiently
recognizing complex patterns, emulating nonlinear dynamics, and predicting the spatio …

Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review

Y Lu, D Chen, E Olaniyi, Y Huang - Computers and Electronics in …, 2022 - Elsevier
In agricultural image analysis, optimal model performance is keenly pursued for better
fulfilling visual recognition tasks (eg, image classification, segmentation, object detection …

Training generative adversarial networks with limited data

T Karras, M Aittala, J Hellsten, S Laine… - Advances in neural …, 2020 - proceedings.neurips.cc
Training generative adversarial networks (GAN) using too little data typically leads to
discriminator overfitting, causing training to diverge. We propose an adaptive discriminator …