Blowup equations for refined topological strings

M Huang, K Sun, X Wang - Journal of High Energy Physics, 2018 - Springer
A bstract Göttsche-Nakajima-Yoshioka K-theoretic blowup equations characterize the
Nekrasov partition function of five dimensional\(\mathcal {N}= 1\) supersymmetric gauge …

Ramanujan identities and quasi-modularity in Gromov-Witten theory

Y Shen, J Zhou - arXiv preprint arXiv:1411.2078, 2014 - arxiv.org
We prove that the ancestor Gromov-Witten correlation functions of one-dimensional compact
Calabi-Yau orbifolds are quasi-modular forms. This includes the pillowcase orbifold which …

Higher genus FJRW invariants of a Fermat cubic

J Li, Y Shen, J Zhou - Geometry & Topology, 2023 - msp.org
We reconstruct all-genus Fan–Jarvis–Ruan–Witten invariants of a Fermat cubic Landau–
Ginzburg space (x 1 3+ x 2 3+ x 3 3:[ℂ 3∕ μ 3]→ ℂ) from genus-one primary invariants …

Proof of the elliptic expansion moonshine conjecture of Căldăraru, He, and Huang

L Hong, M Mertens, K Ono, S Zhang - Proceedings of the American …, 2022 - ams.org
Using predictions in mirror symmetry, Căldăraru, He, and Huang recently formulated a
“Moonshine Conjecture at Landau-Ginzburg points”[arXiv: 2107.12405, 2021] for Klein's …

Virasoro constraints in quantum singularity theories

W He, Y Shen - arXiv preprint arXiv:2103.00313, 2021 - arxiv.org
We introduce Virasoro operators for any Landau-Ginzburg pair (W, G) where W is a non-
degenerate quasi-homogeneous polynomial and G is a certain group of diagonal …

[PDF][PDF] Moonshine at Landau-Ginzburg points

S Huang, A Caldararu, Y He - Proceedings of the …, 2023 - research.birmingham.ac.uk
We formulate a conjecture predicting unexpected relationships among the coefficients of the
elliptic expansions of Klein's modular j-function around j= 0 and j= 1728. Our conjecture is …

Twisted Sectors in Calabi-Yau Type Fermat Polynomial Singularities and Automorphic Forms

D Zhang, J Zhou - arXiv preprint arXiv:2112.07182, 2021 - arxiv.org
We study one-parameter deformations of Calabi-Yau type Fermat polynomial singularities
along degree-one directions. We show that twisted sectors in the vanishing cohomology are …

GKZ hypergeometric series for the Hesse pencil, chain integrals and orbifold singularities

J Zhou - SIGMA. Symmetry, Integrability and Geometry: Methods …, 2017 - emis.de
The GKZ system for the Hesse pencil of elliptic curves has more solutions than the period
integrals. In this work we give different realizations and interpretations of the extra solution …

Givental-type reconstruction at a nonsemisimple point

A Basalaev, N Priddis - Michigan Mathematical Journal, 2018 - projecteuclid.org
We consider the orbifold curve that is a quotient of an elliptic curve E by a cyclic group of
order 4. We develop a systematic way to obtain a Givental-type reconstruction of Gromov …

Categorical Enumerative Invariants of Elliptic Curves

Y He - 2024 - search.proquest.com
Categorical enumerative invariants (CEI) constitute a specific class of invariants associated
with a smooth, proper, and cyclic A∞-algebra and a splitting of its non-commutative Hodge …