Machine learning approaches and databases for prediction of drug–target interaction: a survey paper

M Bagherian, E Sabeti, K Wang… - Briefings in …, 2021 - academic.oup.com
The task of predicting the interactions between drugs and targets plays a key role in the
process of drug discovery. There is a need to develop novel and efficient prediction …

Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities

M Zitnik, F Nguyen, B Wang, J Leskovec… - Information …, 2019 - Elsevier
New technologies have enabled the investigation of biology and human health at an
unprecedented scale and in multiple dimensions. These dimensions include a myriad of …

DeepDTA: deep drug–target binding affinity prediction

H Öztürk, A Özgür, E Ozkirimli - Bioinformatics, 2018 - academic.oup.com
Motivation The identification of novel drug–target (DT) interactions is a substantial part of the
drug discovery process. Most of the computational methods that have been proposed to …

Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences

M Tsubaki, K Tomii, J Sese - Bioinformatics, 2019 - academic.oup.com
Motivation In bioinformatics, machine learning-based methods that predict the compound–
protein interactions (CPIs) play an important role in the virtual screening for drug discovery …

TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments

L Chen, X Tan, D Wang, F Zhong, X Liu, T Yang… - …, 2020 - academic.oup.com
Motivation Identifying compound–protein interaction (CPI) is a crucial task in drug discovery
and chemogenomics studies, and proteins without three-dimensional structure account for a …

Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models

L Huang, L Zhang, X Chen - Briefings in bioinformatics, 2022 - academic.oup.com
Since the problem proposed in late 2000s, microRNA–disease association (MDA)
predictions have been implemented based on the data fusion paradigm. Integrating diverse …

[HTML][HTML] Deep learning in virtual screening: recent applications and developments

TB Kimber, Y Chen, A Volkamer - International journal of molecular …, 2021 - mdpi.com
Drug discovery is a cost and time-intensive process that is often assisted by computational
methods, such as virtual screening, to speed up and guide the design of new compounds …

[HTML][HTML] A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information

Y Luo, X Zhao, J Zhou, J Yang, Y Zhang… - Nature …, 2017 - nature.com
The emergence of large-scale genomic, chemical and pharmacological data provides new
opportunities for drug discovery and repositioning. In this work, we develop a computational …

Identification of miRNA–disease associations via deep forest ensemble learning based on autoencoder

W Liu, H Lin, L Huang, L Peng, T Tang… - Briefings in …, 2022 - academic.oup.com
Increasing evidences show that the occurrence of human complex diseases is closely
related to microRNA (miRNA) variation and imbalance. For this reason, predicting disease …

[HTML][HTML] MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction

X Chen, J Yin, J Qu, L Huang - PLoS computational biology, 2018 - journals.plos.org
Recently, a growing number of biological research and scientific experiments have
demonstrated that microRNA (miRNA) affects the development of human complex diseases …