Linear solvers for power grid optimization problems: a review of GPU-accelerated linear solvers

K Świrydowicz, E Darve, W Jones, J Maack, S Regev… - Parallel Computing, 2022 - Elsevier
The linear equations that arise in interior methods for constrained optimization are sparse
symmetric indefinite, and they become extremely ill-conditioned as the interior method …

Linear solvers for reservoir simulation problems: An overview and recent developments

S Nardean, M Ferronato, A Abushaikha - Archives of Computational …, 2022 - Springer
Linear solvers for reservoir simulation applications are the objective of this review.
Specifically, we focus on techniques for Fully Implicit (FI) solution methods, in which the set …

Accelerating restarted GMRES with mixed precision arithmetic

N Lindquist, P Luszczek… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
The generalized minimum residual method (GMRES) is a commonly used iterative Krylov
solver for sparse, non-symmetric systems of linear equations. Like other iterative solvers …

[PDF][PDF] Machine learning-aided numerical linear algebra: Convolutional neural networks for the efficient preconditioner generation

M Götz, H Anzt - 2018 IEEE/ACM 9th Workshop on Latest …, 2018 - sc18.supercomputing.org
Generating sparsity patterns for effective block-Jacobi preconditioners is a challenging and
computationally expensive task, in particular for problems with unknown origin. In this paper …

Accelerating feedforward computation via parallel nonlinear equation solving

Y Song, C Meng, R Liao… - … Conference on Machine …, 2021 - proceedings.mlr.press
Feedforward computation, such as evaluating a neural network or sampling from an
autoregressive model, is ubiquitous in machine learning. The sequential nature of …

A profile-based ai-assisted dynamic scheduling approach for heterogeneous architectures

T Geng, M Amaris, S Zuckerman, A Goldman… - International Journal of …, 2022 - Springer
While heterogeneous architectures are increasing popular with High Performance
Computing systems, their effectiveness depends on how efficient the scheduler is at …

Iterated Gauss–Seidel GMRES

S Thomas, E Carson, M Rozložník, A Carr… - SIAM Journal on …, 2024 - SIAM
The GMRES algorithm of Saad and Schultz [SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–
869] is an iterative method for approximately solving linear systems, with initial guess and …

Efficient block algorithms for parallel sparse triangular solve

Z Lu, Y Niu, W Liu - Proceedings of the 49th International Conference on …, 2020 - dl.acm.org
The sparse triangular solve (SpTRSV) kernel is an important building block for a number of
linear algebra routines such as sparse direct and iterative solvers. The major challenge of …

Algebraic temporal blocking for sparse iterative solvers on multi-core CPUs

C Alappat, J Thies, G Hager… - … Journal of High …, 2023 - journals.sagepub.com
Sparse linear iterative solvers are essential for many large-scale simulations. Much of the
runtime of these solvers is often spent in the implicit evaluation of matrix polynomials via a …

MPI+ OpenMPI реализация метода сопряженных градиентов с факторизованным предобусловливателем

ОЮ Милюкова - … Института прикладной математики им. МВ Келдыша …, 2020 - mathnet.ru
В работе предлагаются два способа применения MPI+ OpenMP технологии для
безытерационного построения и обращения предобусловливателя блочного Якоби в …