Модели случайных графов и их применения

АМ Райгородский - Труды Московского физико-технического …, 2010 - cyberleninka.ru
Модели случайных графов и их применения – тема научной статьи по математике
читайте бесплатно текст научно-исследовательской работы в электронной …

[HTML][HTML] Two problems on matchings in set families–in the footsteps of Erdős and Kleitman

P Frankl, A Kupavskii - Journal of Combinatorial Theory, Series B, 2019 - Elsevier
Abstract The families F 1,…, F s⊂ 2 [n] are called q-dependent if there are no pairwise
disjoint F 1∈ F 1,…, F s∈ F s satisfying| F 1∪…∪ F s|≤ q. We determine max⁡| F 1|+…+| F …

[HTML][HTML] Erdős–Ko–Rado theorem for {0,±1}-vectors

P Frankl, A Kupavskii - Journal of Combinatorial Theory, Series A, 2018 - Elsevier
The main object of this paper is to determine the maximum number of {0,±1}-vectors subject
to the following condition. All vectors have length n, exactly k of the coordinates are+ 1 and …

Intersection theorems for (− 1, 0, 1)-vectors

P Frankl, A Kupavskii - European Journal of Combinatorics, 2024 - Elsevier
In this paper, we investigate Erdős–Ko–Rado type theorems for families of vectors from
{0,±1} n with fixed numbers of+ 1's and− 1's. Scalar product plays the role of intersection …

Counterexamples to Borsuk's conjecture with large girth

RI Prosanov - Mathematical Notes, 2019 - Springer
Borsuk's celebrated conjecture, which has been disproved, can be stated as follows: in ℝ n,
there exist no diameter graphs with chromatic number larger than n+ 1. In this paper, we …

Distance graphs with large chromatic number and arbitrary girth

A Kupavskii - arXiv preprint arXiv:1306.3921, 2013 - arxiv.org
In this article we consider a problem related to two famous combinatorial topics. One of them
concerns the chromatic number of the space. The other deals with graphs having big girth …

Контрпримеры к гипотезе Борсука, имеющие большой обхват

РИ Просанов - Математические заметки, 2019 - mathnet.ru
Известная опровергнутая гипотеза Борсука может быть сформулирована следующим
образом: в Rn не существует графов диаметров с хроматическим числом больше n+ 1 …

[PDF][PDF] Families of vectors without antipodal pairs

P Frankl, A Kupavskii - arXiv preprint arXiv:1705.07216, 2017 - arxiv.org
arXiv:1705.07216v2 [math.CO] 21 Jan 2018 Families of vectors without antipodal pairs
Page 1 arXiv:1705.07216v2 [math.CO] 21 Jan 2018 Families of vectors without antipodal …

Lower bounds for the chromatic numbers of distance graphs with large girth

AA Sagdeev - Mathematical Notes, 2017 - Springer
Lower Bounds for the Chromatic Numbers of Distance Graphs with Large Girth Page 1 ISSN
0001-4346, Mathematical Notes, 2017, Vol. 101, No. 3, pp. 515–528. © Pleiades Publishing …

Explicit unit distance graphs with exponential chromatic number and arbitrary girth

M Bucić, J Davies - arXiv preprint arXiv:2312.06898, 2023 - arxiv.org
In 1975 Erd\H {o} s initiated the study of the following very natural question. What can be
said about the chromatic number of unit distance graphs in $\mathbb {R}^ 2$ that have large …