Scientific discovery in the age of artificial intelligence

H Wang, T Fu, Y Du, W Gao, K Huang, Z Liu… - Nature, 2023 - nature.com
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, helping scientists to generate hypotheses, design experiments …

A comprehensive survey on graph anomaly detection with deep learning

X Ma, J Wu, S Xue, J Yang, C Zhou… - … on Knowledge and …, 2021 - ieeexplore.ieee.org
Anomalies are rare observations (eg, data records or events) that deviate significantly from
the others in the sample. Over the past few decades, research on anomaly mining has …

Ensemble unsupervised autoencoders and Gaussian mixture model for cyberattack detection

P An, Z Wang, C Zhang - Information Processing & Management, 2022 - Elsevier
Previous studies have adopted unsupervised machine learning with dimension reduction
functions for cyberattack detection, which are limited to performing robust anomaly detection …

Diffusion models for medical anomaly detection

J Wolleb, F Bieder, R Sandkühler, PC Cattin - International Conference on …, 2022 - Springer
In medical applications, weakly supervised anomaly detection methods are of great interest,
as only image-level annotations are required for training. Current anomaly detection …

Machine learning for anomaly detection: A systematic review

AB Nassif, MA Talib, Q Nasir, FM Dakalbab - Ieee Access, 2021 - ieeexplore.ieee.org
Anomaly detection has been used for decades to identify and extract anomalous
components from data. Many techniques have been used to detect anomalies. One of the …

[HTML][HTML] Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry

A Theissler, J Pérez-Velázquez, M Kettelgerdes… - Reliability engineering & …, 2021 - Elsevier
Recent developments in maintenance modelling fueled by data-based approaches such as
machine learning (ML), have enabled a broad range of applications. In the automotive …

A unifying review of deep and shallow anomaly detection

L Ruff, JR Kauffmann, RA Vandermeulen… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …

[HTML][HTML] Recurrent neural networks: A comprehensive review of architectures, variants, and applications

ID Mienye, TG Swart, G Obaido - Information, 2024 - mdpi.com
Recurrent neural networks (RNNs) have significantly advanced the field of machine learning
(ML) by enabling the effective processing of sequential data. This paper provides a …

Deep learning for anomaly detection: A review

G Pang, C Shen, L Cao, AVD Hengel - ACM computing surveys (CSUR), 2021 - dl.acm.org
Anomaly detection, aka outlier detection or novelty detection, has been a lasting yet active
research area in various research communities for several decades. There are still some …

Multiresolution knowledge distillation for anomaly detection

M Salehi, N Sadjadi, S Baselizadeh… - Proceedings of the …, 2021 - openaccess.thecvf.com
Unsupervised representation learning has proved to be a critical component of anomaly
detection/localization in images. The challenges to learn such a representation are two-fold …