Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

Data-driven materials research enabled by natural language processing and information extraction

EA Olivetti, JM Cole, E Kim, O Kononova… - Applied Physics …, 2020 - pubs.aip.org
Given the emergence of data science and machine learning throughout all aspects of
society, but particularly in the scientific domain, there is increased importance placed on …

基于深度学习的表面缺陷检测方法综述

陶显, 侯伟, 徐德 - 自动化学报, 2021 - aas.net.cn
近年来, 基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中. 本文对近年来基于深度
学习的表面缺陷检测方法进行了梳理, 根据数据标签的不同将其分为全监督学习模型方法 …

Deep learning analysis on microscopic imaging in materials science

M Ge, F Su, Z Zhao, D Su - Materials Today Nano, 2020 - Elsevier
Microscopic imaging providing the real-space information of matter, plays an important role
for understanding the correlations between structure and properties in the field of materials …

[HTML][HTML] Opportunities and challenges of text mining in materials research

O Kononova, T He, H Huo, A Trewartha, EA Olivetti… - Iscience, 2021 - cell.com
Research publications are the major repository of scientific knowledge. However, their
unstructured and highly heterogenous format creates a significant obstacle to large-scale …

Machine learning in nuclear materials research

D Morgan, G Pilania, A Couet, BP Uberuaga… - Current Opinion in Solid …, 2022 - Elsevier
Nuclear materials are often demanded to function for extended time in extreme
environments, including high radiation fluxes with associated transmutations, high …

Deep learning in electron microscopy

JM Ede - Machine Learning: Science and Technology, 2021 - iopscience.iop.org
Deep learning is transforming most areas of science and technology, including electron
microscopy. This review paper offers a practical perspective aimed at developers with …

Machine learning accelerates the materials discovery

J Fang, M Xie, X He, J Zhang, J Hu, Y Chen… - Materials Today …, 2022 - Elsevier
As the big data generated by the development of modern experiments and computing
technology becomes more and more accessible, the material design method based on …

Rapid and flexible segmentation of electron microscopy data using few-shot machine learning

S Akers, E Kautz, A Trevino-Gavito, M Olszta… - npj Computational …, 2021 - nature.com
Automatic segmentation of key microstructural features in atomic-scale electron microscope
images is critical to improved understanding of structure–property relationships in many …

In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials

H Zheng, X Lu, K He - Journal of Energy Chemistry, 2022 - Elsevier
Energy materials are vital to energy conversion and storage devices that make renewable
resources viable for electrification technologies. In situ transmission electron microscopy …