Functoriality in categorical symplectic geometry

M Abouzaid, N Bottman - Bulletin of the American Mathematical Society, 2024 - ams.org
Categorical symplectic geometry is the study of a rich collection of invariants of symplectic
manifolds, including the Fukaya $ A_\infty $-category, Floer cohomology, and symplectic …

A characterization of heaviness in terms of relative symplectic cohomology

CY Mak, Y Sun, U Varolgunes - Journal of Topology, 2024 - Wiley Online Library
For a compact subset KK of a closed symplectic manifold (M, ω) (M,ω), we prove that KK is
heavy if and only if its relative symplectic cohomology over the Novikov field is nonzero. As …

On operadic open-closed maps in characteristic

Z Chen - arXiv preprint arXiv:2402.06183, 2024 - arxiv.org
Consider a closed monotone symplectic manifold $(M,\omega) $.\cite {Gan2} constructed a
cyclic open-closed map, which goes from the cyclic homology of the Fukaya category of $ M …

Relative Calabi-Yau structure on microlocalization

C Kuo, W Li - arXiv preprint arXiv:2408.04085, 2024 - arxiv.org
For an oriented manifold $ M $ and a compact subanalytic Legendrian $\Lambda\subseteq
S^* M $, we construct a canonical strong smooth relative Calabi--Yau structure on the …

Symplectic cohomology relative to a smooth anticanonical divisor

D Pomerleano, P Seidel - arXiv preprint arXiv:2408.09039, 2024 - arxiv.org
For a monotone symplectic manifold and a smooth anticanonical divisor, there is a formal
deformation of the symplectic cohomology of the divisor complement, defined by allowing …

Maurer--Cartan elements in symplectic cohomology from compactifications

MS Borman, ME Alami, N Sheridan - arXiv preprint arXiv:2408.09221, 2024 - arxiv.org
We prove that under certain conditions, a normal crossings compactification of a Liouville
domain determines a Maurer--Cartan element for the $ L_\infty $ structure on its symplectic …

Cyclotomic Structures in Symplectic Topology

S Rezchikov - arXiv preprint arXiv:2405.18370, 2024 - arxiv.org
We extend the Cohen-Jones-Segal construction of stable homotopy types associated to flow
categories of Morse-Smale functions $ f $ to the setting where $ f $ is equivariant under a …

Descent with algebraic structures for symplectic cohomology

U Varolgunes - arXiv preprint arXiv:2311.15934, 2023 - arxiv.org
We formulate and prove a chain level descent property of symplectic cohomology for
involutive covers by compact subsets that take into account the natural algebraic structures …

BV bialgebra structures in Floer theory and string topology

J Latschev, A Oancea - arXiv preprint arXiv:2402.16794, 2024 - arxiv.org
We derive the notions of BV unital infinitesimal bialgebra and BV Frobenius algebra from the
topology of suitable compactifications of moduli spaces of decorated genus 0 curves. We …

Spectral Floer theory and tangential structures

N Porcelli, I Smith - arXiv preprint arXiv:2411.03257, 2024 - arxiv.org
In\cite {PS}, for a stably framed Liouville manifold $ X $ we defined a Donaldson-Fukaya
category $\mathcal {F}(X;\mathbb {S}) $ over the sphere spectrum, and developed an …