Human-in-the-loop machine learning: a state of the art

E Mosqueira-Rey, E Hernández-Pereira… - Artificial Intelligence …, 2023 - Springer
Researchers are defining new types of interactions between humans and machine learning
algorithms generically called human-in-the-loop machine learning. Depending on who is in …

Explainable AI for healthcare 5.0: opportunities and challenges

D Saraswat, P Bhattacharya, A Verma, VK Prasad… - IEEE …, 2022 - ieeexplore.ieee.org
In the healthcare domain, a transformative shift is envisioned towards Healthcare 5.0. It
expands the operational boundaries of Healthcare 4.0 and leverages patient-centric digital …

[HTML][HTML] Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond

G Yang, Q Ye, J Xia - Information Fusion, 2022 - Elsevier
Abstract Explainable Artificial Intelligence (XAI) is an emerging research topic of machine
learning aimed at unboxing how AI systems' black-box choices are made. This research field …

Principles and practice of explainable machine learning

V Belle, I Papantonis - Frontiers in big Data, 2021 - frontiersin.org
Artificial intelligence (AI) provides many opportunities to improve private and public life.
Discovering patterns and structures in large troves of data in an automated manner is a core …

[HTML][HTML] The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and …

AF Markus, JA Kors, PR Rijnbeek - Journal of biomedical informatics, 2021 - Elsevier
Artificial intelligence (AI) has huge potential to improve the health and well-being of people,
but adoption in clinical practice is still limited. Lack of transparency is identified as one of the …

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

AB Arrieta, N Díaz-Rodríguez, J Del Ser, A Bennetot… - Information fusion, 2020 - Elsevier
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if
harnessed appropriately, may deliver the best of expectations over many application sectors …

Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey

W Ding, M Abdel-Basset, H Hawash, AM Ali - Information Sciences, 2022 - Elsevier
The continuous advancement of Artificial Intelligence (AI) has been revolutionizing the
strategy of decision-making in different life domains. Regardless of this achievement, AI …

Peeking inside the black-box: a survey on explainable artificial intelligence (XAI)

A Adadi, M Berrada - IEEE access, 2018 - ieeexplore.ieee.org
At the dawn of the fourth industrial revolution, we are witnessing a fast and widespread
adoption of artificial intelligence (AI) in our daily life, which contributes to accelerating the …

Recent advances in trustworthy explainable artificial intelligence: Status, challenges, and perspectives

A Rawal, J McCoy, DB Rawat… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
Artificial intelligence (AI) and machine learning (ML) have come a long way from the earlier
days of conceptual theories, to being an integral part of today's technological society. Rapid …

On interpretability of artificial neural networks: A survey

FL Fan, J Xiong, M Li, G Wang - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Deep learning as performed by artificial deep neural networks (DNNs) has achieved great
successes recently in many important areas that deal with text, images, videos, graphs, and …