Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications

D Svetlizky, M Das, B Zheng, AL Vyatskikh, S Bose… - Materials Today, 2021 - Elsevier
Directed energy deposition (DED) is a branch of additive manufacturing (AM) processes in
which a feedstock material in the form of powder or wire is delivered to a substrate on which …

Additive manufacturing of metals: Microstructure evolution and multistage control

Z Liu, D Zhao, P Wang, M Yan, C Yang, Z Chen… - Journal of Materials …, 2022 - Elsevier
As a revolutionary industrial technology, additive manufacturing creates objects by adding
materials layer by layer and hence can fabricate customized components with an …

[HTML][HTML] Processing parameters in laser powder bed fusion metal additive manufacturing

JP Oliveira, AD LaLonde, J Ma - Materials & Design, 2020 - Elsevier
As metallic additive manufacturing grew in sophistication, users have requested greater
control over the systems, namely the ability to fully change the process parameters. The goal …

[HTML][HTML] Mechanistic models for additive manufacturing of metallic components

HL Wei, T Mukherjee, W Zhang, JS Zuback… - Progress in Materials …, 2021 - Elsevier
Additive manufacturing (AM), also known as 3D printing, is gaining wide acceptance in
diverse industries for the manufacturing of metallic components. The microstructure and …

State of the art in directed energy deposition: From additive manufacturing to materials design

A Dass, A Moridi - Coatings, 2019 - mdpi.com
Additive manufacturing (AM) is a new paradigm for the design and production of high-
performance components for aerospace, medical, energy, and automotive applications. This …

Metal additive manufacturing: Technology, metallurgy and modelling

S Cooke, K Ahmadi, S Willerth, R Herring - Journal of Manufacturing …, 2020 - Elsevier
This paper provides a comprehensive review of metal additive manufacturing, a rapidly
evolving field with innovative technologies and processes. The purpose of this review paper …

[HTML][HTML] Metal vaporization and its influence during laser powder bed fusion process

J Liu, P Wen - Materials & Design, 2022 - Elsevier
Laser powder bed fusion (LPBF) is a key metal additive manufacturing process and has
attracted increasing attention both in academia and industry. An essential physical issue …

Additive manufacturing of metallic components–process, structure and properties

T DebRoy, HL Wei, JS Zuback, T Mukherjee… - Progress in materials …, 2018 - Elsevier
Since its inception, significant progress has been made in understanding additive
manufacturing (AM) processes and the structure and properties of the fabricated metallic …

[HTML][HTML] A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys

K Moeinfar, F Khodabakhshi… - Journal of materials …, 2022 - Elsevier
Additive Manufacturing (AM), likewise branded as 3D printing, is a field of significant interest
that has been recognized as an advanced process for production of engineering …

Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review

H Shipley, D McDonnell, M Culleton, R Coull… - International Journal of …, 2018 - Elsevier
Abstract Selective Laser Melting (SLM) is an additive manufacturing (AM) technique which
has been heavily investigated for the processing of Ti-6Al-4V (Ti64) which is used in the …