Uniqueness of the critical and supercritical Liouville quantum gravity metrics

J Ding, E Gwynne - Proceedings of the London Mathematical …, 2023 - Wiley Online Library
We show that for each c M∈ 1, 25) c_M∈1,25), there is a unique metric associated with
Liouville quantum gravity (LQG) with matter central charge c M c_M. An earlier series of …

Multiplicative chaos of the Brownian loop soup

É Aïdékon, N Berestycki, A Jego… - Proceedings of the …, 2023 - Wiley Online Library
We construct a measure on the thick points of a Brownian loop soup in a bounded domain
DD of the plane with given intensity θ> 0 θ>0, which is formally obtained by exponentiating …

Supercritical Liouville quantum gravity and CLE

M Ang, E Gwynne - arXiv preprint arXiv:2308.11832, 2023 - arxiv.org
We establish the first relationship between Schramm-Loewner evolution (SLE) and Liouville
quantum gravity (LQG) in the supercritical (aka strongly coupled) phase, which corresponds …

The critical Liouville quantum gravity metric induces the Euclidean topology

J Ding, E Gwynne - Frontiers of Mathematics, 2024 - Springer
We show that every possible metric associated with critical (γ= 2) Liouville quantum gravity
(LQG) induces the same topology on the plane as the Euclidean metric. More precisely, we …

Liouville conformal field theory and the quantum zipper

M Ang - arXiv preprint arXiv:2301.13200, 2023 - arxiv.org
Sheffield showed that conformally welding a $\gamma $-Liouville quantum gravity (LQG)
surface to itself gives a Schramm-Loewner evolution (SLE) curve with parameter …

Critical Brownian multiplicative chaos

A Jego - Probability Theory and Related Fields, 2021 - Springer
Brownian multiplicative chaos measures, introduced in Jego (Ann Probab 48: 1597–1643,
2020), Aïdékon et al.(Ann Probab 48 (4): 1785–1825, 2020) and Bass et al.(Ann Probab 22 …

Universality and Phase Transitions in Low Moments of Secular Coefficients of Critical Holomorphic Multiplicative Chaos

H Gu, Z Zhang - arXiv preprint arXiv:2401.05681, 2024 - arxiv.org
We investigate the low moments $\mathbb {E}[| A_N|^{2q}],\, 0< q\leq 1$ of secular
coefficients $ A_N $ of the critical non-Gaussian holomorphic multiplicative chaos, ie …

Critical Gaussian multiplicative chaos revisited

H Lacoin - Annales de l'Institut Henri Poincare (B) Probabilites et …, 2024 - projecteuclid.org
We present new, short and self-contained proofs of the convergence (with an adequate
renormalization) of four different sequences to the critical Gaussian Multiplicative Chaos: the …

Uniqueness of the critical and supercritical Liouville quantum gravity metrics

J Ding, E Gwynne - arXiv preprint arXiv:2110.00177, 2021 - arxiv.org
We show that for each ${\mathbf c} _ {\mathrm M}\in [1, 25) $, there is a unique metric
associated with Liouville quantum gravity (LQG) with matter central charge ${\mathbf c} …

Convergence for complex gaussian multiplicative chaos on phase boundaries

H Lacoin - arXiv preprint arXiv:2301.05274, 2023 - arxiv.org
The complex Gaussian Multiplicative Chaos (or complex GMC) is informally defined as a
random measure $ e^{\gamma X}\mathrm {d} x $ where $ X $ is a log correlated Gaussian …