Generalized Brezis–Seeger–Van Schaftingen–Yung formulae and their applications in ball Banach Sobolev spaces

C Zhu, D Yang, W Yuan - Calculus of Variations and Partial Differential …, 2023 - Springer
Let X be a ball Banach function space on R n. In this article, under some mild extra
assumptions about both X and the boundedness of the Hardy–Littlewood maximal operator …

Brezis–Seeger–Van Schaftingen–Yung-type characterization of homogeneous ball Banach Sobolev spaces and its applications

C Zhu, D Yang, W Yuan - Communications in Contemporary …, 2024 - World Scientific
Let γ∈ ℝ∖{0} and X (ℝ n) be a ball Banach function space satisfying some extra mild
assumptions. Assume that Ω= ℝ n or Ω⊂ ℝ n is an (𝜀,∞)-domain for some 𝜀∈(0, 1]. In this …

Brezis–Van Schaftingen–Yung formulae in ball Banach function spaces with applications to fractional Sobolev and Gagliardo–Nirenberg inequalities

F Dai, X Lin, D Yang, W Yuan, Y Zhang - Calculus of Variations and Partial …, 2023 - Springer
Let X be a ball Banach function space on R n. In this article, under some mild assumptions
about both X and the boundedness of the Hardy–Littlewood maximal operator on the …

Bourgain–Brezis–Mironescu-type characterization of inhomogeneous ball Banach Sobolev spaces on extension domains

C Zhu, D Yang, W Yuan - The Journal of Geometric Analysis, 2024 - Springer
Let {ρ ν} ν∈(0, ν 0) with ν 0∈(0,∞) be a ν 0-radial decreasing approximation of the identity
on R n, X (R n) a ball Banach function space satisfying some extra mild assumptions, and …

Extension Theorem and Bourgain--Brezis--Mironescu-Type Characterization of Ball Banach Sobolev Spaces on Domains

C Zhu, D Yang, W Yuan - arXiv preprint arXiv:2307.11392, 2023 - arxiv.org
Let $\Omega\subset\mathbb {R}^ n $ be a bounded $(\varepsilon,\infty) $-domain with
$\varepsilon\in (0, 1] $, $ X (\mathbb {R}^ n) $ a ball Banach function space satisfying some …

Morrey smoothness spaces: A new approach

DD Haroske, H Triebel - Science China Mathematics, 2023 - Springer
In the recent years, the so-called Morrey smoothness spaces attracted a lot of interest. They
can (also) be understood as generalisations of the classical spaces A (sk p, q/s}(ℝ n) with …

Generalized Brezis--Van Schaftingen--Yung Formulae and Their Applications in Ball Banach Sobolev Spaces

C Zhu, D Yang, W Yuan - arXiv preprint arXiv:2304.00949, 2023 - arxiv.org
Let $ X $ be a ball Banach function space on $\mathbb {R}^ n $. In this article, under some
mild assumptions about both $ X $ and the boundedness of the Hardy--Littlewood maximal …

Compact embeddings in Besov-type and Triebel–Lizorkin-type spaces on bounded domains

HF Gonçalves, DD Haroske, L Skrzypczak - Revista Matemática …, 2021 - Springer
We study embeddings of Besov-type and Triebel–Lizorkin-type spaces, id _ τ: B _ p_1, q_1^
s_1, τ _1 (\varOmega)\, ↪ B _ p_2, q_2^ s_2, τ _2 (\varOmega) id τ: B p 1, q 1 s 1, τ 1 (Ω)↪ B …

Extension and embedding of Triebel–Lizorkin-type spaces built on ball quasi-Banach spaces

Z Zeng, D Yang, W Yuan - The Journal of Geometric Analysis, 2024 - Springer
Abstract Let Ω⊂ R n be a domain and X be a ball quasi-Banach function space with some
extra mild assumptions. In this article, the authors establish the extension theorem about …

Generalized Frank characterizations of Muckenhoupt weights and homogeneous ball Banach Sobolev spaces

Y Zhao, Y Li, D Yang, W Yuan, Y Zhang - Advances in Mathematics, 2024 - Elsevier
In this article, the authors first establish a new characterization of Muckenhoupt weights in
terms of oscillations. As an application, the authors give a new characterization of …