Self-driving laboratories for chemistry and materials science

G Tom, SP Schmid, SG Baird, Y Cao, K Darvish… - Chemical …, 2024 - ACS Publications
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …

The rise of self-driving labs in chemical and materials sciences

M Abolhasani, E Kumacheva - Nature Synthesis, 2023 - nature.com
Accelerating the discovery of new molecules and materials, as well as developing green
and sustainable ways to synthesize them, will help to address global challenges in energy …

A unifying review of deep and shallow anomaly detection

L Ruff, JR Kauffmann, RA Vandermeulen… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …

Computational discovery of transition-metal complexes: from high-throughput screening to machine learning

A Nandy, C Duan, MG Taylor, F Liu, AH Steeves… - Chemical …, 2021 - ACS Publications
Transition-metal complexes are attractive targets for the design of catalysts and functional
materials. The behavior of the metal–organic bond, while very tunable for achieving target …

Human-and machine-centred designs of molecules and materials for sustainability and decarbonization

J Peng, D Schwalbe-Koda, K Akkiraju, T Xie… - Nature Reviews …, 2022 - nature.com
Breakthroughs in molecular and materials discovery require meaningful outliers to be
identified in existing trends. As knowledge accumulates, the inherent bias of human intuition …

Machine learning methods in drug discovery

L Patel, T Shukla, X Huang, DW Ussery, S Wang - Molecules, 2020 - mdpi.com
The advancements of information technology and related processing techniques have
created a fertile base for progress in many scientific fields and industries. In the fields of drug …

Designing materials for electrochemical carbon dioxide recycling

MB Ross, P De Luna, Y Li, CT Dinh, D Kim, P Yang… - Nature Catalysis, 2019 - nature.com
Electrochemical carbon dioxide recycling provides an attractive approach to synthesizing
fuels and chemical feedstocks using renewable energy. On the path to deploying this …

The role of machine learning in the understanding and design of materials

SM Moosavi, KM Jablonka, B Smit - Journal of the American …, 2020 - ACS Publications
Developing algorithmic approaches for the rational design and discovery of materials can
enable us to systematically find novel materials, which can have huge technological and …

Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation

M Krenn, F Häse, AK Nigam, P Friederich… - Machine Learning …, 2020 - iopscience.iop.org
The discovery of novel materials and functional molecules can help to solve some of
society's most urgent challenges, ranging from efficient energy harvesting and storage to …

Evaluation guidelines for machine learning tools in the chemical sciences

A Bender, N Schneider, M Segler… - Nature Reviews …, 2022 - nature.com
Abstract Machine learning (ML) promises to tackle the grand challenges in chemistry and
speed up the generation, improvement and/or ordering of research hypotheses. Despite the …