Destruction of Lagrangian torus for positive definite Hamiltonian systems

CQ Cheng, L Wang - Geometric and Functional Analysis, 2013 - Springer
For an integrable Hamiltonian H_0= 1 2 i= 1^ dy_i^ 2 (d ≧ 2), we show that any Lagrangian
torus with a given unique rotation vector can be destructed by arbitrarily C^ 2d-δ-small …

Quantitative destruction of invariant circles

L Wang - arXiv preprint arXiv:2109.08785, 2021 - arxiv.org
For area-preserving twist maps on the annulus, we consider the problem on quantitative
destruction of invariant circles with a given frequency $\omega $ of an integrable system by …

[HTML][HTML] Total destruction of Lagrangian tori

L Wang - Journal of Mathematical Analysis and Applications, 2014 - Elsevier
Total destruction of Lagrangian tori - ScienceDirect Skip to main contentSkip to article Elsevier
logo Journals & Books Search RegisterSign in View PDF Download full issue Search …

Destruction of invariant circles for Gevrey area-preserving twist map

L Wang - Journal of Dynamics and Differential Equations, 2015 - Springer
In this paper, we show that for exact area-preserving twist maps on annulus, the invariant
circles with a given rotation number can be destroyed by arbitrarily small Gevrey-α α …

Total destruction of invariant tori for the generalized Frenkel–Kontorova model

X Su, L Wang - Journal of mathematical physics, 2012 - pubs.aip.org
Total destruction of invariant tori for the generalized Frenkel–Kontorova model | Journal of
Mathematical Physics | AIP Publishing Skip to Main Content Umbrella Alt Text Umbrella Alt …

Variational principle for contact Tonelli Hamiltonian systems

L Wang, J Yan - arXiv preprint arXiv:1505.02918, 2015 - arxiv.org
We establish an implicit variational principle for the equations of the contact flow generated
by the Hamiltonian $ H (x, u, p) $ with respect to the contact 1-form $\alpha= du-pdx $ under …

[PDF][PDF] Converse KAM theory revisited

L Wang - arXiv preprint arXiv:1208.2840, 2012 - arxiv.org
arXiv:1208.2840v1 [math.DS] 14 Aug 2012 Page 1 arXiv:1208.2840v1 [math.DS] 14 Aug 2012
CONVERSE KAM THEORY REVISITED Lin Wang Abstract. For an integrable Hamiltonian with …

[PDF][PDF] Converse KAM Theory for Positive Definite Hamiltonian Systems

L Wang, CQ Cheng - 2013 - researchgate.net
Abstract By the Kolmogorov, Arnold and Moser (KAM) theory, most (full Lebesgue measure)
invariant tori of an integrable Hamiltonian system are preserved under small perturbations …

[引用][C] ANALYTIC DESTRUCTION OF MINIMAL FOLIATIONS ON A CIRCLE

L Wang