Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

A survey on federated learning systems: Vision, hype and reality for data privacy and protection

Q Li, Z Wen, Z Wu, S Hu, N Wang, Y Li… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
As data privacy increasingly becomes a critical societal concern, federated learning has
been a hot research topic in enabling the collaborative training of machine learning models …

Model-contrastive federated learning

Q Li, B He, D Song - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Federated learning enables multiple parties to collaboratively train a machine learning
model without communicating their local data. A key challenge in federated learning is to …

Towards personalized federated learning

AZ Tan, H Yu, L Cui, Q Yang - IEEE transactions on neural …, 2022 - ieeexplore.ieee.org
In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI
research, there has been growing awareness and concerns of data privacy. Recent …

Federated learning on non-iid data silos: An experimental study

Q Li, Y Diao, Q Chen, B He - 2022 IEEE 38th international …, 2022 - ieeexplore.ieee.org
Due to the increasing privacy concerns and data regulations, training data have been
increasingly fragmented, forming distributed databases of multiple “data silos”(eg, within …

Fedscale: Benchmarking model and system performance of federated learning at scale

F Lai, Y Dai, S Singapuram, J Liu… - International …, 2022 - proceedings.mlr.press
We present FedScale, a federated learning (FL) benchmarking suite with realistic datasets
and a scalable runtime to enable reproducible FL research. FedScale datasets encompass …

Towards federated foundation models: Scalable dataset pipelines for group-structured learning

Z Charles, N Mitchell, K Pillutla… - Advances in Neural …, 2024 - proceedings.neurips.cc
Abstract We introduce Dataset Grouper, a library to create large-scale group-structured (eg,
federated) datasets, enabling federated learning simulation at the scale of foundation …

Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey

D Li, D Han, TH Weng, Z Zheng, H Li, H Liu… - Soft Computing, 2022 - Springer
Federated learning (FL) is a promising decentralized deep learning technology, which
allows users to update models cooperatively without sharing their data. FL is reshaping …

Motley: Benchmarking heterogeneity and personalization in federated learning

S Wu, T Li, Z Charles, Y Xiao, Z Liu, Z Xu… - arXiv preprint arXiv …, 2022 - arxiv.org
Personalized federated learning considers learning models unique to each client in a
heterogeneous network. The resulting client-specific models have been purported to …

Flair: Federated learning annotated image repository

C Song, F Granqvist, K Talwar - Advances in Neural …, 2022 - proceedings.neurips.cc
Cross-device federated learning is an emerging machine learning (ML) paradigm where a
large population of devices collectively train an ML model while the data remains on the …