We first survey the current state of the art concerning the dynamical properties of multidimensional continued fraction algorithms defined dynamically as piecewise fractional …
We study the strong convergence of certain multidimensional continued fraction algorithms. In particular, in the two-and three-dimensional case, we prove that the second Lyapunov …
J Cassaigne, S Labbé, J Leroy - Moscow Journal of Combinatorics and …, 2022 - msp.org
We study ternary sequences associated with a multidimensional continued fraction algorithm introduced by the first author. The algorithm is defined by two matrices and we …
T Garrity, OV Osterman - arXiv preprint arXiv:2410.02032, 2024 - arxiv.org
We study the complexity of S-adic sequences corresponding to a family of 216 multi- dimensional continued fractions maps, called Triangle Partition maps (TRIP maps), with an …
We study a class of interval translation mappings introduced by Bruin and Troubetzkoy, describing a new renormalization scheme, inspired by the classical Rauzy induction for this …
W Baalbaki, C Bonanno, A Del Vigna, T Garrity… - The Ramanujan …, 2024 - Springer
Our goal is to show that the additive-slow-Farey version of the Triangle map (a type of multidimensional continued fraction algorithm) gives us a method for producing a map from …
АС Скрипченко - Успехи математических наук, 2023 - mathnet.ru
Изучение динамических и топологических свойств перекладываний отрезков и их естественных обобщений является важной задачей, находящейся на стыке нескольких …
I Amburg, T Garrity - arXiv preprint arXiv:1703.01589, 2017 - arxiv.org
Triangle partition maps form a family that includes many, if not most, well-known multidimensional continued fraction algorithms. This paper begins the exploration of the …