Well-posedness and ill-posedness for the cubic fractional Schr\" odinger equations

Y Cho, G Hwang, S Kwon, S Lee - arXiv preprint arXiv:1311.0082, 2013 - arxiv.org
We study the low regularity well-posedness of the 1-dimensional cubic nonlinear fractional
Schr\" odinger equations with L\'{e} vy indices $1<\alpha< 2$. We consider both non …

On fractional nonlinear Schrödinger equation with combined power-type nonlinearities.

VD Dinh, B Feng - Discrete & Continuous Dynamical …, 2019 - search.ebscohost.com
We undertake a comprehensive study for the fractional nonlinear Schrödinger equation i∂<
sub> tu−(− Δ)< sup> su= μ< sub> 1| u|< sup> α1 u+ μ< sub> 2| u|< sup> α2 u, u (0)= u< sub> …

Linear adjoint restriction estimates for paraboloid

C Miao, J Zhang, J Zheng - Mathematische Zeitschrift, 2019 - Springer
We prove a class of modified paraboloid restriction estimates with a loss of angular
derivatives for the full set of paraboloid restriction conjecture indices. This result generalizes …

Probabilistic Radial Strichartz Estimates and Its Application

G Hwang - Funkcialaj Ekvacioj, 2024 - jstage.jst.go.jp
In this paper, we consider the Cauchy problem for the linear dispersive equations. We
establish the probabilistic radial Strichartz estimates for a randomization preserving the …

The transition of energy and bound states in the continuum of fractional Schrödinger equation in gravitational field and the effect of the minimal length

X Zhang, B Yang, C Wei, M Luo - Communications in Nonlinear Science …, 2019 - Elsevier
In this paper, we study the fractional Schrödinger equation in the Earth's gravitational field.
We firstly introduce a family of auxiliary functions to construct solutions to the fractional …

Linear adjoint restriction estimates for paraboloid

C Miao, J Zhang, J Zheng - arXiv preprint arXiv:1507.06100, 2015 - arxiv.org
We prove a class of modified paraboloid restriction estimates with a loss of angular
derivatives for the full set of paraboloid restriction conjecture indices. This result generalizes …

Well-posedness and Scattering for the Critical Fractional Schrödinger Equations

G Hwang - Funkcialaj Ekvacioj, 2020 - jstage.jst.go.jp
We consider the Cauchy problem for the critical fractional Schrödinger equation with the
power type nonlinearity. Hong-Sire [13] proved the local wellposedness, small data global …

[PDF][PDF] ON FRACTIONAL NONLINEAR SCHRODINGER EQUATION WITH COMBINED POWER-TYPE NONLINEARITIES

D VAN DUONG, B FENG - researchgate.net
We undertake a comprehensive study for the fractional nonlinear Schrödinger equation i∂
tu−(−∆) su= µ1| u| α1 u+ µ2| u| α2 u, u (0)= u0, where d 2d− 1≤ s< 1, 0< α1< α2< 4s d− 2s …

Bound states in the continuum of fractional Schr\" odinger equation in the Earth's gravitational field and their effects in the presence of a minimal length: applications to …

X Zhang, B Yang, C Wei, M Luo - arXiv preprint arXiv:1707.04089, 2017 - arxiv.org
In this paper, the influence of the fractional dimensions of the L\'evy path under the Earth's
gravitational field is studied, and the phase transitions of energy and wave functions are …