[HTML][HTML] Layer potentials, Kac's problem, and refined Hardy inequality on homogeneous Carnot groups

M Ruzhansky, D Suragan - Advances in Mathematics, 2017 - Elsevier
We propose the analogues of boundary layer potentials for the sub-Laplacian on
homogeneous Carnot groups/stratified Lie groups and prove continuity results for them. In …

[PDF][PDF] Initial-boundary value problems for the wave equation

TS Kalmenov, D Suragan - Electronic Journal of Differential …, 2014 - kurims.kyoto-u.ac.jp
INITIAL-BOUNDARY VALUE PROBLEMS FOR THE WAVE EQUATION 1. Introduction In Ω =
(0, 1) consider the one-dimensional potential u(x Page 1 Electronic Journal of Differential …

[HTML][HTML] Isoperimetric inequalities for Schatten norms of Riesz potentials

G Rozenblum, M Ruzhansky, D Suragan - Journal of Functional Analysis, 2016 - Elsevier
In this note we prove that the ball is a maximiser for integer order Schatten p-norms of the
Riesz potential operators among all domains of a given measure in R d. In particular, the …

On Kac's principle of not feeling the boundary for the Kohn Laplacian on the Heisenberg group

M Ruzhansky, D Suragan - Proceedings of the American Mathematical …, 2016 - ams.org
In this note we construct an integral boundary condition for the Kohn Laplacian in a given
domain on the Heisenberg group extending to the setting of the Heisenberg group M. Kac's …

On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain

TS Kal'menov, NE Tokmagambetov - Siberian Mathematical Journal, 2013 - Springer
ON A NONLOCAL BOUNDARY VALUE PROBLEM FOR THE MULTIDIMENSIONAL HEAT
EQUATION IN A NONCYLINDRICAL DOMAIN Page 1 Siberian Mathematical Journal, Vol …

On transparent boundary conditions for the high--order heat equation

D Suragan, N Tokmagambetov - arXiv preprint arXiv:1302.1401, 2013 - arxiv.org
In this paper we develop an artificial initial boundary value problem for the high-order heat
equation in a bounded domain $\Omega $. It is found an unique classical solution of this …

Boundary criterion for integral operators

TS Kal'menov, M Otelbaev - Doklady Mathematics, 2016 - Springer
Integral operators of the form L_K^-1 f (x)= ∫\limits_ Ω K (x, t) f (t) dt for the case of a finite
domain Ω⊂ R n with smooth boundary∂ Ω are considered. Conditions on the real kernel K …

[图书][B] Spectral geometry of partial differential operators

M Ruzhansky, M Sadybekov, D Suragan - 2020 - library.oapen.org
This book is an attempt to collect a number of properties emerging in recent research
describing certain features of the theory of partial differential equations that can be attributed …

On an analog of Samarskii-Ionkin type boundary value problem for the Poisson equation in the disk

MA Sadybekov, BT Torebek… - AIP Conference …, 2015 - elibrary.ru
In this paper, we consider a Samarskii-Ionkin type boundary value problem for the Poisson
equation in the disk and prove its well-posedness. The possibility of separation of variables …

On a boundary value problem for the biharmonic equation

TS Kal'Menov, UA Iskakova - AIP Conference Proceedings, 2015 - elibrary.ru
On a boundary value problem for the biharmonic equation КОРЗИНА ПОИСК НАВИГАТОР
ЖУРНАЛЫ КНИГИ ПАТЕНТЫ ПОИСК АВТОРЫ ОРГАНИЗАЦИИ КЛЮЧЕВЫЕ СЛОВА …