An efficient entropy-based causal discovery method for linear structural equation models with IID noise variables

F Xie, R Cai, Y Zeng, J Gao… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
The discovery of causal relationships from the observational data is an important task. To
identify the unique causal structure belonging to a Markov equivalence class, a number of …

Detecting heterogeneity in the causal direction of dependence: A model-based recursive partitioning approach

W Wiedermann, B Zhang, D Shi - Behavior Research Methods, 2024 - Springer
Methods of causal discovery and direction of dependence to evaluate causal properties of
variable relations have experienced rapid development. The majority of causal discovery …

Third moment-based causal inference

W Wiedermann - Behaviormetrika, 2022 - Springer
In observational data, covariance-based measures of dependence are of limited use for
detecting reverse-causation (using y→ x instead of x→ y when quantifying the causal effect) …

Causal Discovery of Linear Non-Gaussian Acyclic Model with Small Samples

F Xie, R Cai, Y Zeng, Z Hao - … Science and Big Data Engineering. Big Data …, 2019 - Springer
Abstract Linear non-Gaussian Acyclic Model (LiNGAM) is a well-known model for causal
discovery from observational data. Existing estimation methods are usually based on infinite …

Procesamiento de señales de vibración mediante Descomposición Modal Empírica (EMD) para la extracción de características con fines de diagnóstico de fallos en …

CE Granda Ordoñez - 2017 - dspace.ups.edu.ec
El estudio de la fiabilidad de los equipos industriales ha hecho posible la creación de los
diferentes tipos de mantenimiento, como es el caso del mantenimiento predictivo que ha …