Three-manifolds with many flat planes

R Bettiol, B Schmidt - Transactions of the American Mathematical Society, 2018 - ams.org
We discuss the rigidity (or lack thereof) imposed by different notions of having an abundance
of zero curvature planes on a complete Riemannian $3 $-manifold. We prove a rank rigidity …

[HTML][HTML] Manifolds with many hyperbolic planes

S Lin, B Schmidt - Differential Geometry and its Applications, 2017 - Elsevier
Manifolds with many hyperbolic planes - ScienceDirect Skip to main contentSkip to article
Elsevier logo Journals & Books Search RegisterSign in View PDF Download full issue Search …

Hyperbolic rank rigidity for manifolds of-pinched negative curvature

C Connell, T Nguyen, R Spatzier - Ergodic Theory and Dynamical …, 2020 - cambridge.org
Hyperbolic rank rigidity for manifolds of -pinched negative curvature Page 1 Ergod. Th. & Dynam.
Sys. (2020), 40, 1194–1216 doi:10.1017/etds.2018.113 c Cambridge University Press, 2018 …

Three-manifolds of constant vector curvature one

B Schmidt, J Wolfson - Comptes …, 2017 - comptes-rendus.academie-sciences …
Une variété riemannienne est dite CVC (ϵ) si sa courbure sectionnelle satisfait
ponctuellement sec≤ ε ou sec≥ ε et si chaque vecteur tangent appartient à un plan tangent …

Curvature-Free Rigidity for Higher-Rank Three-Manifolds

S Lin - Indiana University Mathematics Journal, 2018 - JSTOR
We prove two rigidity results for complete Riemannian three-manifolds of higher rank.
Complete three-manifolds have higher spherical rank if and only if they are spherical space …

[引用][C] Problem 0.1. Which geometric or dynamic properties characterize symmetric spaces? I have been investigating two different notions that characterize symmetric …

S LIN