Some sharp inequalities of Mizohata--Takeuchi-type.

A Carbery, M Iliopoulou, H Wang - Revista Mathematica …, 2024 - content.ems.press
Some sharp inequalities of Mizohata–Takeuchi-type Page 1 Rev. Mat. Iberoam. (Online first)
DOI 10.4171/RMI/1463 © 2024 Real Sociedad Matemática Española Published by EMS Press …

Oscillatory integral operators and variable Schr\" odinger propagators: beyond the universal estimates

M Chen, S Gan, S Guo, J Hickman, M Iliopoulou… - arXiv preprint arXiv …, 2024 - arxiv.org
We consider a class of H\" ormander-type oscillatory integral operators in $\mathbb {R}^ n $
for $ n\geq 3$ odd with real analytic phase. We derive weak conditions on the phase which …

Tomographic Fourier extension identities for submanifolds of

J Bennett, S Nakamura, S Shiraki - Selecta Mathematica, 2024 - Springer
We establish identities for the composition T k, n (| gd σ^| 2), where g↦ gd σ^ is the Fourier
extension operator associated with a general smooth k-dimensional submanifold of R n, and …

Restriction estimates using decoupling theorems and two-ends Furstenberg inequalities

H Wang, S Wu - arXiv preprint arXiv:2411.08871, 2024 - arxiv.org
We propose to study the restriction conjecture using decoupling theorems and two-ends
Furstenberg inequalities. Specifically, we pose a two-ends Furstenberg conjecture, which …

Lp estimates of the maximal Schrödinger operator in Rn

X Du, J Li - Journal of Functional Analysis, 2025 - Elsevier
We obtain L p estimates of the maximal Schrödinger operator in R n using polynomial
partitioning, bilinear refined Strichartz estimates, and weighted restriction estimates.

Local smoothing for the Hermite wave equation

R Schippa - Pure and Applied Analysis, 2025 - msp.org
We show local smoothing estimates in L p-spaces for solutions to the Hermite wave
equation. For this purpose, we obtain a parametrix given by a Fourier Integral Operator …

On smoothing estimates for Schrödinger equations on product spaces Tm× Rn

X Chen, Z Guo, M Shen, L Yan - Journal of Functional Analysis, 2024 - Elsevier
Abstract Let Δ T m× R n denote the Laplace-Beltrami operator on the product spaces T m× R
n. In this article we show that‖ eit Δ T m× R nf‖ L p (T m× R n×[0, 1])≤ C‖ f‖ W α, p (T m× …

On pointwise convergence of multilinear Bochner-Riesz means

D He, K Li, J Zheng - arXiv preprint arXiv:2412.00296, 2024 - arxiv.org
We improve the range of indices when the multilinear Bochner-Riesz means converges
pointwisely. We obtain this result by establishing the $ L^ p $ estimates and weighted …

Sharp restriction estimates for several degenerate higher co-dimensional quadratic surfaces

Z Cao, C Miao, Y Pang - arXiv preprint arXiv:2404.09020, 2024 - arxiv.org
Fourier restriction conjecture is an important problem in harmonic analysis. Guo-Oh [17]
studied the restriction estimates for quadratic surfaces of co-dimension 2 in $\mathbb {R} …

A distinction between the paraboloid and the sphere in weighted restriction

A Iosevich, R Zhang - arXiv preprint arXiv:2312.12779, 2023 - arxiv.org
For several weights based on lattice point constructions in $\mathbb {R}^ d (d\geq 2) $, we
prove that the sharp $ L^ 2$ weighted restriction inequality for the sphere is very different …