Quasi-similarp-hyponormal operators

BP Duggal - Integral Equations and Operator Theory, 1996 - Springer
Quasi-similar <Emphasis Type="Italic">p </Emphasis>-hyponormal operators Page 1 Integr
Equat Oper Th Vol. 26 (1996) 0378-620X/96/030338-0851.50+0.20/0 (c) Birkh~iuser Verlag …

Fuglede-Putnam's theorem for\boldmath p-hyponormal or\boldmath\rm {log}-hyponormal operators

A Uchiyama, K Tanahashi - Glasgow Mathematical Journal, 2002 - cambridge.org
Let T be p-hyponormal or\rm {log}-hyponormal on a Hilbert space H. Then we have XT= T^*
X whenever XT^*= TX for some X\in\scriptstyle {B}(\scriptstyle {H}). This is an extension of …

On quasisimilarity for log-hyponormal operators

IH Jeon, K Tanahashi, A Uchiyama - Glasgow Mathematical Journal, 2004 - cambridge.org
In this paper we show that the normal parts of quasisimilar log-hyponormal operators are
unitarily equivalent. A Fuglede-Putnam type theorem for log-hyponormal operators is …

[PDF][PDF] A note on k-paranormal operators

CS Kubrusly, BP Duggal - Operators and Matrices, 2010 - files.ele-math.com
It is still unknown whether the inverse of an invertible k-paranormal operator is normaloid,
and so whether a k-paranormal operator is totally hereditarily normaloid. We provide …

[HTML][HTML] Bishop's property (β), a commutativity theorem and the dynamics of class A (s, t) operators

BP Duggal, CS Kubrusly, IH Kim - Journal of Mathematical Analysis and …, 2015 - Elsevier
Given a Hilbert space operator A∈ B (H) with polar decomposition A= U| A|, the class A (s, t),
0< s, t≤ 1, consists of operators A∈ B (H) such that| A⁎| 2 t≤(| A⁎| t| A| 2 s| A⁎| t) t t+ s …

On generalised Putnam—Fuglede theorems

BP Duggal - Monatshefte für Mathematik, 1989 - Springer
Let B (H) denote the algebra of operators on the Hilbert space H, and let P denote the class
of A∈ B (H) which are such that the restriction of A to an invariant subspace is in P …

[HTML][HTML] A Putnam–Fuglede commutativity property for Hilbert space operators

BP Duggal, CS Kubrusly - Linear Algebra and its Applications, 2014 - Elsevier
Given Hilbert space operators A, B∈ B (H), define δ A, B and△ A, B in B (B (H)) by δ A, B
(X)= AX− XB and△ A, B (X)= AXB− X for each X∈ B (H). An operator A∈ B (H) satisfies the …

On intertwining operators

BP Duggal - Monatshefte für Mathematik, 1988 - Springer
Let B (H) denote the algebra of operators on the Hilbert space H into itself. Given A, BεB (H),
define C (A, B) and R (A, B): B (H)→ B (H) by C (A, B) X= AX− XB and R (A, B) X= AXB− X …

[PDF][PDF] Quasinormality and Fuglede-Putnam Theorem for Class Operators

SM Patel, K TANAHASHI, A UCHIYAMA, M YANAGIDA - 2006 - projecteuclid.org
Let $\mathcal {H} $ be a complex Hilbertspace and $ T= U| T| $ be the polar decomposition
of a bounded linear operator $ T\in B (\mathcal {H}) $. An operator $ T $ is said to be …

[PDF][PDF] An extension of Fuglede-Putnam theorem for certain posinormal operators

A Bachir - Int. J. Contemp. Math. Sci, 2013 - academia.edu
An Extension of Fuglede-Putnam Theorem for Certain Posinormal Operators Page 1 Int. J.
Contemp. Math. Sciences, Vol. 8, 2013, no. 17, 827 - 832 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2013.3452 …