A Uchiyama, K Tanahashi - Glasgow Mathematical Journal, 2002 - cambridge.org
Let T be p-hyponormal or\rm {log}-hyponormal on a Hilbert space H. Then we have XT= T^* X whenever XT^*= TX for some X\in\scriptstyle {B}(\scriptstyle {H}). This is an extension of …
IH Jeon, K Tanahashi, A Uchiyama - Glasgow Mathematical Journal, 2004 - cambridge.org
In this paper we show that the normal parts of quasisimilar log-hyponormal operators are unitarily equivalent. A Fuglede-Putnam type theorem for log-hyponormal operators is …
CS Kubrusly, BP Duggal - Operators and Matrices, 2010 - files.ele-math.com
It is still unknown whether the inverse of an invertible k-paranormal operator is normaloid, and so whether a k-paranormal operator is totally hereditarily normaloid. We provide …
BP Duggal, CS Kubrusly, IH Kim - Journal of Mathematical Analysis and …, 2015 - Elsevier
Given a Hilbert space operator A∈ B (H) with polar decomposition A= U| A|, the class A (s, t), 0< s, t≤ 1, consists of operators A∈ B (H) such that| A⁎| 2 t≤(| A⁎| t| A| 2 s| A⁎| t) t t+ s …
BP Duggal - Monatshefte für Mathematik, 1989 - Springer
Let B (H) denote the algebra of operators on the Hilbert space H, and let P denote the class of A∈ B (H) which are such that the restriction of A to an invariant subspace is in P …
BP Duggal, CS Kubrusly - Linear Algebra and its Applications, 2014 - Elsevier
Given Hilbert space operators A, B∈ B (H), define δ A, B and△ A, B in B (B (H)) by δ A, B (X)= AX− XB and△ A, B (X)= AXB− X for each X∈ B (H). An operator A∈ B (H) satisfies the …
BP Duggal - Monatshefte für Mathematik, 1988 - Springer
Let B (H) denote the algebra of operators on the Hilbert space H into itself. Given A, BεB (H), define C (A, B) and R (A, B): B (H)→ B (H) by C (A, B) X= AX− XB and R (A, B) X= AXB− X …
SM Patel, K TANAHASHI, A UCHIYAMA, M YANAGIDA - 2006 - projecteuclid.org
Let $\mathcal {H} $ be a complex Hilbertspace and $ T= U| T| $ be the polar decomposition of a bounded linear operator $ T\in B (\mathcal {H}) $. An operator $ T $ is said to be …