M Yang, MK Lim, Y Qu, X Li, D Ni - Expert Systems with Applications, 2023 - Elsevier
Accurate credit risk prediction can help companies avoid bankruptcies and make adjustments ahead of time. There is a tendency in corporate credit risk prediction that more …
I Aruleba, Y Sun - IEEE Access, 2024 - ieeexplore.ieee.org
Credit risk prediction is a critical task in the financial industry, allowing lenders to assess the likelihood of a borrower defaulting on a loan. Traditional machine learning (ML) classifiers …
G Sirbiladze, H Garg, I Khutsishvili, B Ghvaberidze… - Kybernetes, 2023 - emerald.com
Purpose The attributes that influence the selection of applicants and the relevant crediting decisions are naturally distinguished by interactions and interdependencies. A new method …
FET Espinoza, MAC Ygnacio - TecnoLógicas, 2023 - revistas.itm.edu.co
Esta revisión analiza una selección de artículos científicos sobre la implantación de sistemas de evaluación del riesgo de crédito para identificar las soluciones existentes, las …
FET Espinoza, MAC Ygnacio - TecnoLógicas, 2023 - scielo.org.co
This review analyzes a selection of scientific articles on the implementation of Credit Risk Assessment (CRA) systems to identify existing solutions, the most accurate ones, and …
Y Resti - AIP Conference Proceedings, 2024 - pubs.aip.org
Classifying applicants with good credit risk is essential for developing the banking industry in the future. On the other hand, applicants with bad risk can certainly make banks, as …
Z Hassani, V Hajihashemi - Breast Cancer Detection using Modified …, 2022 - aeuso.org
Early detection of cancer is the greatest approach for curing cancer and increasing the survival rate. people suffer from cancer in the world. Now, advanced Artificial intelligence …
Existe una real e importante necesidad en el sistema financiero, principalmente en Colombia, de aplicar este tipo de modelos de predicción de morosidad, pues, si bien las …
The control of credit risk is a crucial task for financial institutions. Various subjective and quantitative indicators are used to forecast credit risks. Machine learning technology uses …