Quantum harmonic analysis for polyanalytic Fock spaces

R Fulsche, R Hagger - Journal of Fourier Analysis and Applications, 2024 - Springer
We develop the quantum harmonic analysis framework in the reducible setting and apply
our findings to polyanalytic Fock spaces. In particular, we explain some phenomena …

Toeplitz Operators on Fock Spaces

Z Hu, X Lv - Integral Equations and Operator Theory, 2014 - Springer
Given φ ∈\verb" C"^ 2 (C^ n) φ∈ C 2 (C n) satisfying dd^ c φ ≃\omega_0 ddc φ≃ ω 0, 0<
p<∞, let F^ p (φ) F p (φ) be the generalized Fock space of all holomorphic functions f …

[HTML][HTML] Sharp Forelli–Rudin estimates and the norm of the Bergman projection

C Liu - Journal of Functional Analysis, 2015 - Elsevier
The purpose of this paper is twofold. We first establish a sharp version of Forelli–Rudin
estimates for certain integrals on the ball. Then, as main application of these estimates, we …

[HTML][HTML] Localization and the Toeplitz algebra on the Bergman space

J Xia - Journal of Functional Analysis, 2015 - Elsevier
Let T f denote the Toeplitz operator with symbol function f on the Bergman space L a 2 (B,
dv) of the unit ball in C n. It is a natural problem in the theory of Toeplitz operators to …

Toeplitz operators on non-reflexive Fock spaces.

R Fulsche - Revista Mathematica Iberoamericana, 2024 - content.ems.press
We generalize several results on Toeplitz operators over reflexive, standard weighted Fock
spaces F pt to the non-reflexive cases p D 1; 1. Among these results are the characterization …

Compact Hankel operators with bounded symbols

R Hagger, J Virtanen - arXiv preprint arXiv:1906.09901, 2019 - arxiv.org
We discuss the compactness of Hankel operators on Hardy, Bergman and Fock spaces with
focus on the differences between the three cases, and complete the theory of compact …

Density of Toeplitz operators in rotation-invariant Toeplitz algebras

V Dewage, M Mitkovski - arXiv preprint arXiv:2310.12367, 2023 - arxiv.org
We use results and techniques from Werner's``quantum harmonic analysis''to show that $ G
$-invariant Toeplitz operators are norm dense in $ G $-invariant Toeplitz algebras for all …

Geometric Arveson-Douglas conjecture and holomorphic extensions

RG Douglas, Y Wang - Indiana University Mathematics Journal, 2017 - JSTOR
In this paper, we introduce techniques from complex harmonic analysis to prove a weaker
version of the Geometric Arveson-Douglas Conjecture on the Bergman space for a complex …

Berger-Coburn theorem, localized operators, and the Toeplitz algebra

W Bauer, R Fulsche - Operator algebras, Toeplitz operators and related …, 2020 - Springer
We give a simplified proof of the Berger-Coburn theorem on the boundedness of Toeplitz
operators and extend one part of this theorem to the setting of p-Fock spaces (1≤ p≤∞) …

A Wiener algebra for Fock space operators

R Fulsche - arXiv preprint arXiv:2311.11859, 2023 - arxiv.org
We introduce an algebra $\mathcal W_t $ of linear operators that act continuously on each of
the Fock spaces $ F_t^ p $, $1\leq p\leq\infty $, and contains all Toeplitz operators with …