Printability and shape fidelity of bioinks in 3D bioprinting

A Schwab, R Levato, M D'Este, S Piluso, D Eglin… - Chemical …, 2020 - ACS Publications
Three-dimensional bioprinting uses additive manufacturing techniques for the automated
fabrication of hierarchically organized living constructs. The building blocks are often …

Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models

P Jain, H Kathuria, N Dubey - Biomaterials, 2022 - Elsevier
Tissue/organ shortage is a major medical challenge due to donor scarcity and patient
immune rejections. Furthermore, it is difficult to predict or mimic the human disease condition …

[HTML][HTML] Extrusion-based additive manufacturing technologies: State of the art and future perspectives

SC Altıparmak, VA Yardley, Z Shi, J Lin - Journal of Manufacturing …, 2022 - Elsevier
Extrusion-based additive manufacturing (AM) has recently become widespread for the layer-
by-layer fabrication of three-dimensional prototypes and components even with highly …

Progress in 3D bioprinting technology for tissue/organ regenerative engineering

I Matai, G Kaur, A Seyedsalehi, A McClinton… - Biomaterials, 2020 - Elsevier
Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of
the need for alternatives to allograft tissues. Within the last three decades, research efforts in …

Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review

A Fatimi, OV Okoro, D Podstawczyk, J Siminska-Stanny… - Gels, 2022 - mdpi.com
Three-dimensional (3D) printing is well acknowledged to constitute an important technology
in tissue engineering, largely due to the increasing global demand for organ replacement …

[HTML][HTML] Additive manufacturing (3D printing): A review of materials, methods, applications and challenges

TD Ngo, A Kashani, G Imbalzano, KTQ Nguyen… - Composites Part B …, 2018 - Elsevier
Freedom of design, mass customisation, waste minimisation and the ability to manufacture
complex structures, as well as fast prototyping, are the main benefits of additive …

[HTML][HTML] Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs

N Ashammakhi, S Ahadian, C Xu, H Montazerian… - Materials Today Bio, 2019 - Elsevier
The native tissues are complex structures consisting of different cell types, extracellular
matrix materials, and biomolecules. Traditional tissue engineering strategies have not been …

3D bioprinting of tissues and organs for regenerative medicine

S Vijayavenkataraman, WC Yan, WF Lu… - Advanced drug delivery …, 2018 - Elsevier
Abstract 3D bioprinting is a pioneering technology that enables fabrication of biomimetic,
multiscale, multi-cellular tissues with highly complex tissue microenvironment, intricate …

3D and 4D printing of polymers for tissue engineering applications

DG Tamay, T Dursun Usal, AS Alagoz… - … in bioengineering and …, 2019 - frontiersin.org
Three-dimensional (3D) and Four-dimensional (4D) printing emerged as the next generation
of fabrication techniques, spanning across various research areas, such as engineering …

Additive manufacturing of biomaterials

S Bose, D Ke, H Sahasrabudhe… - Progress in materials …, 2018 - Elsevier
Biomaterials are used to engineer functional restoration of different tissues to improve
human health and the quality of life. Biomaterials can be natural or synthetic. Additive …