MLMD: a programming-free AI platform to predict and design materials

J Ma, B Cao, S Dong, Y Tian, M Wang… - npj Computational …, 2024 - nature.com
Accelerating the discovery of advanced materials is crucial for modern industries,
aerospace, biomedicine, and energy. Nevertheless, only a small fraction of materials are …

Search on stable binary and ternary compounds of two-dimensional transition metal halides

DC Hvazdouski, МS Baranava, EA Korznikova… - 2D …, 2024 - iopscience.iop.org
Ab initio driven density functional theory-based high throughput simulations have been
conducted to search for stable two-dimensional (2D) structures based on transition metal …

Machine Learning Prediction of the Corrosion Rate of Zinc-Based Alloys Containing Copper, Lithium, Magnesium, and Silver

A Davletshin, EA Korznikova… - The Journal of Physical …, 2025 - ACS Publications
Implementation of machine learning (ML) techniques in materials science often requires
large data sets. However, a proper choice of features and regression methods allows the …

Insights into Ni 3 TeO 6 calcination via in situ synchrotron X-ray diffraction

S Wang, J Fernández-Catalá, Q Shu… - Physical Chemistry …, 2024 - pubs.rsc.org
The versatility of metal tellurate chemistry enables the creation of unique structures with
tailored properties, opening avenues for advancements in a wide range of applications …

Двумерные магнитные материалы MX2 И MXY (где M–переходный металл; X, Y–халькоген, X≠ Y): исследование в рамках DFT

ДЧ Гвоздовский - 2024 - libeldoc.bsuir.by
В данной работе представлена методика поиска новых двумерных материалов,
включающая с себя критерии термодинамической и динамической устойчивостей …